UniTok:视觉生成与理解的统一革命——解码字节跳动多模态框架的技术内核与范式突破

在视觉生成与理解长期割裂的困境下,字节跳动联合港中文团队开源的UniTok,以单模型双任务能力+多码本量化架构,重新定义了视觉分词器的技术边界。这一突破不仅将图文处理效率提升300%,更在ImageNet等基准测试中实现78.6%的零样本准确率,标志着多模态模型进入「生成即理解」的新纪元。


一、 ​技术困局与范式突破

▎传统方案的三大桎梏
  1. 任务割裂:生成模型(如Stable Diffusion)需独立训练VAE编码器,理解模型(如CLIP)依赖对比学习,导致双模型资源消耗
  2. 表征冲突:生成任务需细粒度细节编码,理解任务侧重高层语义提取,传统单码本量化难以兼顾
  3. 效率瓶颈:VQ-VAE等方案存在码本膨胀问题,超2万个token时训练稳定性骤降
▎UniTok的解法哲学

通过多码本量化+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花生糖@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值