一、什么是 NeRF?
NeRF(Neural Radiance Fields,神经辐射场) 是近年来计算机视觉和图形学领域的一项颠覆性技术。它通过深度学习方法,将一组多角度的2D照片,重建出具有高度真实感的3D场景模型。
核心原理:
NeRF 的核心思想是训练一个神经网络来表示整个空间中的光场(Radiance Field)。该网络可以预测任意空间点在某个方向上的颜色(RGB)和密度(σ),从而实现对整个3D场景的连续表示与高质量渲染。
与传统摄影测量(Photogrammetry)的区别:
维度 | NeRF | Photogrammetry |
---|---|---|
光照表现 | 可精确还原光照、阴影、反射等物理效果 | 仅能重建几何与纹理,缺乏动态光影细节 |
输出质量 | 场景更真实、细节丰富,尤其适合复杂材质表面 | 建模精度高,但质感偏“塑料感” |
处理速度 | 训练时间较长,推理后快速生成新视角 | 成熟算法链路高效,适合大规模项目 |