AlterEgo:首款“近心灵感应”可穿戴设备,实现无声语音的实时捕获、翻译与交互

#AI提效·半月创作挑战赛#

在人机交互的演进史上,从键盘、触屏到语音助手,每一次突破都让表达更自然。如今,麻省理工学院(MIT)媒体实验室孵化的初创公司 AlterEgo 带来了更具革命性的范式——无需发声,仅凭“默念”即可与机器和他人交流。这款名为 AlterEgo 的可穿戴设备,能以接近思维的速度捕捉用户“即将说出但尚未发声”的语言意图,实现无声语音识别、跨语言实时翻译、设备控制与失语者辅助沟通,被誉为“最接近心灵感应的技术”。

核心原理:捕捉“准备说话”的神经肌肉信号

AlterEgo 并非读取大脑中的抽象思想,而是聚焦于一个高度特异化的生理过程:当人“在心里说话”(subvocalization)时,大脑会向语音系统发送微弱的神经电信号,驱动喉部、舌部、下颌等肌肉产生几乎不可见的运动。这些信号虽不足以引发实际发声,却足以被高灵敏度传感器捕获。

设备通过以下方式实现精准感知:

  • 多点高精度电极阵列:贴合于面部与颈部关键位置——包括下颌、舌骨、颊部、喉部及眼眶下方;
  • 被动式生物电传感:仅接收肌肉电信号(sEMG),不发射任何能量,安全无侵入;
  • 信号-语言映射模型:基于深度学习,将特
【源码免费下载链接】:https://renmaiwang.cn/s/jmsue 卷积神经网络(Convolutional Neural Networks, CNN)是一种深度学习模型,在图像处理和计算机视觉领域具有重要应用价值。通过MATLAB这一强大的工具平台,我们可以方便地实现CNN模型的构建、训练优化过程。该压缩包中的MATLAB代码提供了一个完整的CNN实例,用户可以直接运行并观察其工作原理。理解CNN的基本结构是掌握其核心功能的关键。CNN通常由卷积层、池化层、全连接层以及激活函数等主要组件构成。具体来说,卷积层通过使用卷积核对输入图像进行扫描操作,提取图像中的特征信息;池化层则能够有效降低数据维度的同时减少计算量,并保留关键的视觉信息特征;全连接层负责将之前提取的特征信号映射到目标任务(如分类或回归)所需的输出结果空间中。此外,在MATLAB环境下,我们可以通过`deepLearningNetwork`函数轻松创建一个CNN模型架构。具体步骤包括:首先定义网络结构参数,例如卷积层的数量、尺寸以及激活函数类型等;其次设计完整的网络层次结构,并配置相关的超参数设置;最后利用提供的训练数据对模型进行优化和调参。在实际操作中,用户需要准备并整理好适合CNN处理的高质量图像数据集,并对其进行预处理工作,如归一化、裁剪或翻转等;接着可以使用MATLAB内置的数据导入管理工具(如`imageDatastore`)来简化数据加载流程;最后通过设置合适的训练选项参数和执行训练过程,使模型能够自动学习并提取具有判别性的特征。在模型训练完成后,用户可以通过调用`classify`或`predict`函数对测试集中的图像进行分类预测,并评估模型的性能表现。值得注意的是,在这个压缩包中提供的CNN代码实例可能包含了从数据准备到模型部署的完整流程,其中包括了可视化、超参数调整等功能模
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花生糖@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值