【语义分割】语义分割概念及算法介绍

一、基本概念

语义分割是计算机视觉中很重要的一个方向。不同于目标检测和识别,语义分割实现了图像像素级的分类。它能够将一张图片或者视频(视频以帧来提取的话其实就是图片),按照类别的异同,将图像分为多个块。
如下图所示:

在这里插入图片描述

二、研究现状

2.1 传统算法

  • 灰度分割
    最简单的语义分段形式涉及分配区域必须满足的硬编码规则或属性,以便为其分配特定标签。规则可以根据像素的属性(例如灰度级强度)来构建。使用此技术的一种方法是拆分(Split)和合并(Merge)算法。该算法递归地将图像分割成子区域,直到可以分配标签,然后通过合并它们将相邻的子区域与相同的标签组合。
    这种方法的问题是规则必须硬编码。此外,仅用灰色级别的信息来表示复杂的类(如人)是极其困难的。因此,需要特征提取和优化技术来正确地学习这些复杂类所需的表示。

  • 条件随机场
    考虑通过训练模型为每个像素分配类来分割图像。如果我们的模型不完美,我们可能会得到自然界不可能得到的噪声分割结果(如图中所示,狗像素与猫像素混合)。
    可以通过考虑像素之间的先验关系来避免这些问题,例如,对象是连续的,因此附近的像素往往具有相同的标签。为了模拟这些关系,我们使用条件随机场(CRF)。
    CRF是一种用于结构化预测的统计建模方法。与离散分类器不同,CRF可以在进行预测之前考虑“相邻上下文”,比如像素之间的关系。这使得它成为语义分割的理想候选。
    图像中的每个像素都与一组有限的可能状态相关联。在我们的示例中,目标标签是可能的状态集。将一个状态(或标签,u)分配给单个像素(x)的成本称为它的一元成本(unary cost)。为了对像素之间的关系建模,我们还考虑了将一对标签(u,v)分配给一对像素(x,y)的成本,即成对成本(pairwise cost)。我们可以考虑它的近邻像素对(Grid CRF)或者我们可以考虑图像中的所有像素对(Dense CRF)
    在这里插入图片描述

2.2 深度学习方法

与此同时随着深度学习技术的不断发展,深度学习在语义分割任务中大放异彩,取得了骄人的成绩。从第一篇真正意义上的深度学习方法语义分割模型FCN说起,语义分割发展了不足六年的时间,经典的SegNet,Deeplab系列,DenseASPP等等,再到近些年来研究热点的NAS方法。不断的刷新各个分割数据集的Leaberboard。

三、数据集及评价指标

3.1 常用数据集

语义分割有一些常用的数据集,这些数据集在各种论文中常作为算法优劣性的一个验证(其中SUNRGBD是四维的,它还有利用深度学习相机得到了一个Deep维度,Depth类似于灰度图像,只是它的每个像素值是传感器距离物体的实际距离):
在这里插入图片描述

3.2 常用指标

  • 像素准确率(PA):正确分类的像素数量与所有像素数量的比值。
  • 像素准确率平均值(MPA):PA的变体,每个类内正确分类的像素数量和该类的所有像素点数 (Ground truth)的比值,之后求所有类的平均。
  • 平均交并比(MIoU):检验语义分割效果最重要的指标。计算两个集合的交并比,两个集合分别是真实值(Ground truth)和预测值(predicted segmentation),是一个交集与并集的比值。平均交并比为对各类的交并比进行平均。
    在这里插入图片描述

四、经典模型

  • FCN网络(CVPR 2015):图像分割领域的开山之作
    将端到端的卷积网络推广到语义分割中;
    重新将预训练好的Imagenet网络用于分割问题中;
    使用反卷积层进行上采样;
    提出了跳跃连接来改善上采样的粗糙程度。
    论文讲解博客:

  • UNet网络

  • SegNet网络

  • 空洞卷积(Dilated Convolution)

  • Deeplab(V1 V2)

  • RefineNet

  • PSPNet

  • 大内核(Large Kernel Matters)

  • Deeplab v3

  • EncNet

  • DenseASPP

  • ResNet_DUC

  • Deeplab v3+

  • DFANet

  • DANet

  • Auto_Deeplab

  • APCNet

  • CANet
    ……

  • BiSeNet(ECCV 2018)

  • STDC(CVPR 2021):BiSeNet的轻量化。
    一些轻量化语义分割算法,如DFANet、BiSeNetV1,采用了轻量化backbone来减少计算量,但它们都是直接使用为分类任务设计的backbone,无法充分发挥在语义分割领域中的性能。
    BiSeNet使用了multi-path结构,融合低层次特征和高层次特征,但增加分支会增加网络的运行时间。
    STDC对BiSeNet中的multi-path结构进行了改进,可以在提取底层细节特征的同时减少网络计算量。

参考资料

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值