Hugging Face 的 Transformers 库是目前最流行和功能最强大的自然语言处理(NLP)库之一,提供了对大量预训练模型的访问和支持。这些模型涵盖了文本生成、文本分类、命名实体识别、机器翻译等多种任务。Hugging Face 的 Transformers 库提供了 Tokenizer(分词器)、Model(模型)、Pipeline(流水线)等模块,便于灵活使用。
本篇博客我们主要介绍基于Hugging Face 的 Transformers 库进行Tokenizer的基本使用 及 Tokenizer的训练 。
1. Tokenizer的基本使用
本部分内容主要参考博客: 【Transformers基础入门篇3】基础组件之Tokenizer
HuggingFace的Transformers库中提供了许多经典大模型(如BERT、GPT、Llama等)的Tokenizer,可以基于 AutoTokenizer 来自动适配并使用。
# 先从transformers 导入 AutoTokenizer
from transformers import AutoTokenizer
input = 'What is machine learning?'
1.1 Tokenizer的加载及保存
- 从HuggingFace加载,输入模型名称或者路径,即可加载对应的分词器
model_path = '../model/Meta-Llama-3-8B'
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
- 将tokenizer 保存到本地
tokenizer.save_pretrained("./llama_tokenizer")
- 从本地加载tokenizer
tokenizer = AutoTokenizer.from_pretrained("./llama_tokenizer/")
- 查看词典
print(tokenizer.vocab) # 查看词典
输出的部分词典如下:
'Äıte': 122957, 'į°ìĿ´': 47318, 'Ġpropia': 98429, 'Ġobscene': 84109, 'Ġstehen': 65957, 'Ġexpansions': 78588, 'ĠpÅĻÃŃ': 100578, 'nite': 62664, 'Emp': 29831, 'ui': 2005, 'g': 70, 'ĠPlatform': 17916, 'ĠHanson': 76313, '-suite': 92674, 'Term': 17695, 'ιÏĥÏĦο': 122974, 'Ġgord': 94913,
其中,Ġ是拉丁文表示,代表分词中的空格。
- 查看词典大小
print(tokenizer.vocab_size) # 查看词典的大小
输出如下:
128000
1.2 分词
tokenizer.tokenize()
将输入文本拆分为 token 列表。它只负责将文本分词为子词单元(subword),而不进行其他处理(如添加特殊标记符、转换为 token ID 等)
input = 'What is machine learning?'
tokens = tokenizer.tokenize(input)
print('tokens:', tokens)
输出如下:
tokens: ['What', 'Ġis', 'Ġmachine', 'Ġlearning', '?']
1.3 索引转换
(1)基于tokenizer.encode
函数
在 tranformers 库中,我们可以直接基于 tokenizer.encode
函数将词序列转换为token的id序列。
ids = tokenizer.encode(input)
print('ids:', ids)
输出如下:
ids: [3923, 374, 5780, 6975, 30]
(2)基于 tokenizer.convert_
系列函数
如果我们想详细的看到整个转换的过程,可以基于 tokenizer.convert_
系列函数进行处理,如下所示:
tokens = tokenizer.tokenize(input)
# 将词序列转换为id序列
ids_1 = tokenizer.convert_tokens_to_ids(tokens)
print('ids_1:', ids_1)
# 将id序列转换为token序列
tokens_1 = tokenizer.convert_ids_to_tokens(ids_1)
print('tokens_1:', tokens_1)
# 将token序列转换为string
str_sen = tokenizer.convert_tokens_to_string(tokens_1)
print('str_sen:', str_sen)
输出如下:
ids_1: [3923, 374, 5780, 6975, 30]
tokens_1: ['What', 'Ġis', 'Ġmachine', 'Ġlearning', '?']
str_sen: What is machine learning?
2. Tokenizer的训练
2.1 BPE分词
本文主要以 Byte-Pair Encoding(BPE) 为基础分词算法来介绍Tokenizer的训练。这里,先简单介绍下BPE算法:
- 训练方法:从字符级的小词表出发,训练产生合并规则以及一个词表
- 编码方法:将文本切分成字符,再应用训练阶段获得的合并规则
- 经典模型:GPT, GPT-2, RoBERTa, BART, LLaMA, ChatGLM等
BPE分词算法的详细介绍可以参考我之前的博客:NLP中常见的分词算法(BPE、WordPiece、Unigram、SentencePiece)
2.2 分词器训练
本部分内容主要参考博客:MiniDeepSeek分词器训练流程
针对我们自己有一份语料数据,想从头开始训练自己的大模型的情况,我们可以基于Transformers库训练自己的分词器。
在训练环节,目标是给定语料,通过训练算法,生成合并规则和词表。 BPE算法是从一个字符级别的词表为基础,合并pair并添加到词表中,逐步形成大词表。合并规则为选择相邻pair词频最大的进行合并。具体步骤如下:
- Step 1.导入必要的库
import random
from tqdm import tqdm
from transformers import AutoTokenizer
import json
from datasets import load_dataset
from tokenizers import (
decoders,
models,
normalizers,
pre_tokenizers,
processors,
trainers,
Tokenizer,
)
import os
- Step 2.读取 tokenizer_train.jsonl 文件
def read_texts_from_jsonl(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
for line in f:
data = json.loads(line)
yield data['text']
# 测试读取数据
data_path = './dataset/tokenizer_train.jsonl'
texts = read_texts_from_jsonl(data_path)
# 打印前几行文本
for i, text in enumerate(texts):
if i < 5:
print(text)
else:
break
- Step 3.初始化分词器
首先,通过 models.BPE()
创建了一个基于 Byte-Pair Encoding (BPE) 模型的分词器。
# 初始化tokenizer
tokenizer = Tokenizer(models.BPE())
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False)
# 定义特殊token
special_tokens = ["<unk>", "<s>", "</s>"]
# 设置训练器并添加特殊token
trainer = trainers.BpeTrainer(
vocab_size=6400,
special_tokens=special_tokens, # 确保这三个token被包含
show_progress=True,
initial_alphabet=pre_tokenizers.ByteLevel.alphabet()
)
print("分词器初始化成功,准备训练。")
- Step 4.训练分词器
# 读取文本数据
texts = read_texts_from_jsonl(data_path)
# 训练tokenizer
tokenizer.train_from_iterator(texts, trainer=trainer)
print("分词器训练完成!")
- Step 5.保存分词器
在训练完毕之后,还需要设置解码器 (tokenizer.decoder = decoders.ByteLevel()
) ,这是为了在生成文本时正确地将分词器产生的 token 序列还原回原始文本。
# 设置解码器
tokenizer.decoder = decoders.ByteLevel()
# 保存tokenizer
tokenizer_dir = "./model/miniDeepSeek_tokenizer"
os.makedirs(tokenizer_dir, exist_ok=True)
tokenizer.save(os.path.join(tokenizer_dir, "tokenizer.json"))
tokenizer.model.save("./model/miniDeepSeek_tokenizer")
# 手动创建配置文件
config = {
"add_bos_token": False,
"add_eos_token": False,
"add_prefix_space": True,
"added_tokens_decoder": {
"0": {
"content": "<unk>",
"lstrip": False,
"normalized": False,
"rstrip": False,
"single_word": False,
"special": True
},
"1": {
"content": "<s>",
"lstrip": False,
"normalized": False,
"rstrip": False,
"single_word": False,
"special": True
},
"2": {
"content": "</s>",
"lstrip": False,
"normalized": False,
"rstrip": False,
"single_word": False,
"special": True
}
},
"bos_token": "<s>",
"clean_up_tokenization_spaces": False,
"eos_token": "</s>",
"legacy": True,
"model_max_length": 1000000000000000019884624838656,
"pad_token": None,
"sp_model_kwargs": {},
"spaces_between_special_tokens": False,
"tokenizer_class": "PreTrainedTokenizerFast",
"unk_token": "<unk>",
"use_default_system_prompt": False,
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<s>user\\n' + content + '</s>\\n<s>assistant\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' + '\\n' }}{% endif %}{% endfor %}"
}
# 保存配置文件
with open(os.path.join(tokenizer_dir, "tokenizer_config.json"), "w", encoding="utf-8") as config_file:
json.dump(config, config_file, ensure_ascii=False, indent=4)
print("Tokenizer 保存成功!")
保存完成的分词器相关文件如下所示: