VLM 系列——Qwen2 VL——论文解读——前瞻(源码解读)

37 篇文章 17 订阅 ¥89.90 ¥99.00

一、概述

1、是什么

    是一系列多模态大型语言模型(MLLM),其中包括2B、7B、72B三个版本,整体采用视觉编码器+LLM形式(可以认为没有任何投射层)。比较创新的是图像缩放方式+3D LLM位置编码+(预估后面的训练方式也不太一样)。能够处理包括文本、图像在内的多种数据类型,具备图片描述、单图文问答、 多图问对话、视频理解对话 、json格式、多语言、agent、高清图理解(代码编写和debug论文暂时未提)。Qwen2-VL-2B可以轻松地在现代手机上本地进行推理。

2、亮点

    *大尺寸图:读懂不同分辨率和不同长宽比的图片,在DocVQA、RealWorldQA、MTVQA 等基准测试创下全球领先的表现;
    *视频理解:理解20分钟以上长视频,支持基于视频的问答、对话和内容创作等应用;
    *智能体:具备强大的视觉智能体能力,可自主操作手机和机器人,借助复杂推理和决策的能力,Qwen2-VL 可以集成到手机、机器人等设备,根据视觉环
VLM(Vision Language Model)和ViT(Vision Transformer)是两种不同的深度学习模型架构,它们在处理视觉任务和融合视觉与语言信息方面各自有着独特的应用和优势。 ViT(Vision Transformer)是将自然语言处理领域中广泛使用的Transformer模型应用到计算机视觉领域。Transformer架构最初是为处理序列数据设计的,如文本,通过自注意力机制有效地捕捉序列内各个元素之间的关联。ViT将图像分割成一系列固定大小的补丁(patches),然后将这些补丁转换成序列数据,应用Transformer架构进行处理。ViT在图像分类、目标检测等任务上取得了与甚至超越传统卷积神经网络(CNN)的性能。 VLM(Vision Language Model)则是指那些能够处理视觉和语言双模态数据的模型。这类模型通常可以接收图像和文本作为输入,并对这两类数据进行联合处理。VLM的目的是让模型能够理解和生成图像与语言之间的关联,例如,给定一个图像,VLM能够生成描述该图像的自然语言句子,或者根据输入的描述语句,选择或生成相关的图像。VLM的这种能力使得它在图像字幕生成、视觉问答(VQA)、跨模态检索等领域非常有用。 VLM和ViT的关系在于,ViT可以作为VLM中处理视觉信息的组成部分,VLM往往整合了ViT来处理图像输入,同时可能还包括处理语言信息的其他组件,如NLP中的Transformer模型。在某些高级的VLM中,ViT可以帮助模型更好地理解图像内容,从而使其在联合处理视觉和语言信息时更加高效。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TigerZ*

你点滴支持,我持续创作,羞羞

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值