bellman-ford算法求最短路

本文介绍了Bellman-Ford算法,用于在包含负权边的图中寻找最短路径。该算法通过重复迭代逐步更新节点距离,能够检测到负权环。在最坏情况下,时间复杂度为O(n^2)。提供的C++代码展示了算法的实现,包括检查负权环的存在并输出结果。
摘要由CSDN通过智能技术生成

bellman-ford算法

上节课我们学习了kruskal算法

今天我们来学习bellman-ford算法求最短路

求有负环最短路

原理:

在有负环的时候,理论上是没有最短路的

这个图是特例

非常暴力的方法

  1. for step = 1 → \to n - 1
  2. 枚举每条边(a, b, c)
  3. 如果d[a]+c<d[b] d[b]=d[a]+c

就完了!

时间复杂度 O ( n 2 ) O(n^2) O(n2)

上一下代码


#include <iostream>
#include <cstdio>
using namespace std;

const int INF = (int) 1E9 + 7;

struct Edge
{
    int a, b, c;
}
edge[100010];

int d[1000010];

int n, m;

void bellmanFord()
{
    for(int i = 1; i <= n; i ++)
    {
        d[i] = INF;
    }
    d[1] = 0;
    for(int step = 0; step < n - 1; step ++)
    {
        for(int i = 0; i < m; i ++)
        {
            int a = edge[i].a;
            int b = edge[i].b;
            int c = edge[i].c;
            if(d[a] + c < d[b])
            {
                d[b] = d[a] + c;
            }
        }
    }
    if(d[n] == INF)
    {
        puts("can't arrive!");
        return ;
    }
    bool flag = false;
    for(int i = 0; i < m; i ++)
    {
        int a = edge[i].a;
        int b = edge[i].b;
        int c = edge[i].c;
        if(d[a] + c < d[b])
        {
            d[b] = d[a] + c;
            flag = true;
        }
    }
    if(flag)
    {
        puts("circle");
    }
    else
    {
        printf("%d\n", d[n]);
    }
}

int main()
{
    scanf("%d%d", &n, &m);
    for(int i = 0; i < m; i ++)
    {
        scanf("%d%d%d", &edge[i].a, &edge[i].b, &edge[i].c);
    }
    bellmanFord();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值