其实一直在接触人工智能方面的资料。
很多人都是在趁着人工智能的兴起,褥新来人的羊毛。 将人工智能不断的变成人工智障。
其实这个问题,本身是一个简单的大规模运算。
比如我们人工识别一张图片中识别其中是否有某某菜,只需要判断是否其中包含某某菜的特征,比如说某某菜的脸或者妖艳的投球姿势。
在人的眼中,这些特征 五彩缤纷,充满几何意义。
但是在计算机读取到的信息,是这些组成五彩缤纷的数字信息,比如1080的图片,就是1080×1920个像素点,每个像素点有红绿蓝三个值。
说白了,我们要找的特征就是一个一个的像素点关系。
这个特征说起来我们可以自己总结,比如我们要找某某菜, 直接找可能就有点麻烦, 我们先找到一个人,然后,再看这个人是不是有某某菜的脸。一步一步的确定。
在以前的公司,很久之前的算法就是这样来识别一个物品的,说起来很简单,其实在现实场景下很复杂。
打个比方,要识别一个图片里面是否有人,我们要找人的基本特征,比如说,找人的肢体。
要找人,你可以想着来描述人的共有特征,然而这些不能用简单的几何来描述,因为这个人的姿态可能千奇百怪,这个人穿长裙和穿短袖,外体特征就有很大区别。
还有人的肤色,现实中的光照,实际环境中的遮挡这些因素。
在传统的数据分析有点像比着kuku买鸭蛋,都是人为的创建一个模板,这些模板的创建往往要很大的经验的积累。
模板创建周期相对交复杂,时间周期长,在实际的应用中缺乏泛化性。