【深度学习系列】机器学习的概念

想要学习deep learning ,首先我们应该对机器学习的基本概念有所了解

1、什么是深度学习?

深度学习是基于机器学习延伸出来的一个新的领域,由以人脑结构为启发的神经网络算法为起源加之模型结构深度的增加发展。

2、鼻祖人:Geoffrey Hinton。

3、深度学习的应用展示:

  3.1无人驾驶中路标识别

  3.2Google Now中的语音识别

  3.3 百度识图

  3.5 针对图片,自动生成文字的描述。

--------------------------------------------------------------------------------

一、基本概念:训练集、测试集、特征值、监督学习、非监督学习、半监督学习、分类、回归

二、概念学习:人类学习概念:鸟,车,计算机

定义:概念学习是指从有关某个布尔函数的输入输出训练的样例中推断出布尔函数、

三、例子

小明进行水上运动,是否享受运动取决与很多因素

天气:晴 阴 雨

温度 :暖冷

湿度: 普通 大

风力:强 弱

水温:暖 冷

预报:一样 变化

享受运动:是否

概念定义在实例(instance)集合上,这个集合表示为x.

X:所有可能的日子,每个日子的值由天气、温度、湿度、风力、水温、预报 6个属性表示

待学习的概念或目标函数成为目标概念(target concept)记为:c.

C(x)=1 当享受运动时,C(x)=0 当不享受运动时,C(x)也可以叫做y

x: 每个实例

X:样例。所有实例的集合

学习目标:f : X -> Y

四、概念:

训练集(training set/data):用来进行训练,也就是产生模型或者算法的数据集。

测试集( testing set/data):用来专门进行测试已经学习好的模型或者算法的数据集。

特征向量(feature vector/features):属性的集合

标记(label):学习的目标是什么,需要被标记c(x)

正例(positive example):好的例子

反例(negative example): 坏的例子

五、例子

美国硅谷房价因素:面积(平方米)、学区(评分0-10)

其中的面积、学区 就是特征值

学习的感念,或者叫学习的目标就是房价的值,也就是上面的概念标记(label)

实例:对面积、学区、房价 实例化, 也就是数据集


六、分类(classification):目标标记为类别型数据(category)

回归(regression):目标标记为连续性数值(continous numeric value)


七、例子:研究肿瘤良性,恶性因素:肿瘤的尺寸、颜色的关系

特征值:肿瘤尺寸、颜色

标记:良性/恶性

这种方式:聚类的方式,引出下面的问题。


监督学习(supervised learning):训练集有类别标记(class label)

无监督学习(unsupervised learning):无类别标记

半监督学习(semi-learning):有类别标记的训练集+无标记的训练集

 

八、步骤

1、数据拆分出:训练集和测试集

2、用训练集和训练集的特征向量来训练算法

3、用学习来的算法运用在测试集上来评估(调参,验证集)

 


发布了57 篇原创文章 · 获赞 79 · 访问量 27万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览