SPASS-信度分析

信度分析概述

效度

        效度指的是量表是否真正反映了我们希望测量的东西。一般来说,有4种类型的效度:内容效度、标准效度、结构效度和区分效度。内容效度是一种基于概念的评价指标,其他三种效度是基于经验的评价指标。如果一个量表实际上是有效的,那么我们希望上述4种指标都比较满意。

信度

        是指测量的一致性。信度本身与测量所得结果正确与否无关,它的功能在于检验测量本身是否稳定。制作完成一份量表或问卷后,首先应该对该量表进行信度分析,以确保其可靠性和稳定性,以免影响问卷内容分析结果的准确性。

信度与效度关系

         效度与信度的关系是信度为效度的必要而非充分条件,即有效度一定有信度,但有信度不一定有效度。

内在信度分析

基本概念

        内在信度也称为内部一致性,用以衡量组成量表题项的内在一致性程度如何。常用的检测方法是Cronbach'sα系数法和分半(Split-half)系数法。

统计原理

Cronbach'sα系数

分半信度系数 

        是在测试后对测试项目按奇项、偶项或其他标准分成两半,分别记分,由两半分数之间的相关系数得到信度系数。需要进行斯皮尔曼——布朗公式校正,校正的公式为:   

SPSS统计分析实例

        在学生的性格特征调查中共选了10名学生在8个项目上进行测试,其数据如下表,试对其进行内在信度分析。  

序号

内向性

活动性

支配性

深思性

健壮性

稳定性

社会性

激动性

1

4

6

5

5

5

3

5

4

2

2

5

4

5

5

3

4

2

3

3

5

3

6

4

1

3

1

4

5

6

4

7

5

5

6

2

5

3

6

5

6

4

4

6

3

6

3

3

3

2

1

1

2

1

7

4

6

6

6

5

6

5

1

8

7

6

2

6

4

5

6

4

9

2

3

2

2

7

4

7

2

10

2

3

4

4

5

6

3

1

 

 

 

 主要结果及分析

可知α系数为0.79,其标准化后的α系数为0.79,说明量表的信度一般,还有进一步优化的必要。 

所有评估项目的描述性情况表 

        显示了将某一项从量表中删除的情况下,量表的平均分、方差、每个项目得分与剩余各项目得分之间的相关系数,以该项目为自变量,所有其他项目为因变量建立回归方程的 值以及Cronbach's  值。从表中可以看出,“活动性”与其他项目之间的相关性最高,为0.752,而且“活动性”与其他项目的复相关系数也最高,为0.982,这表明“活动性”与其他项目的关系最为密切。同时也可以看出,如果删除“支配性”,则其 系数变成了0.802,有所提升,但幅度并不大。 

再测信度分析

基本概念

        同一个测验项目,对同一组人员进行前后两次测试,两次测试所得分数的相关系数即为再测信度。它反映两次测验结果有无变动,也就是测验分数的稳定程度,故又称为稳定性系数。

统计原理

        再测信度实质是求的同一量表在两次测试中的相关系数,通常求的是如下式所示的Pearson相关系数。

 SPSS实例分析 

序号

内向性1

活动性1

支配性1

深思性1

健壮性1

稳定性1

社会性1

激动性1

1

3

5

6

5

4

4

4

4

2

2

5

5

5

3

4

5

3

3

3

5

3

6

5

2

3

2

4

4

6

4

7

5

4

5

3

5

3

6

5

6

4

4

4

5

6

4

3

2

2

1

1

3

2

7

4

6

6

6

4

5

5

2

8

6

6

2

5

4

5

5

4

9

3

3

3

3

6

5

6

3

10

2

3

4

4

5

6

4

2

 

内向性

活动性

支配性

深思性

健壮性

稳定性

社会性

激动性

总分

0.898

0.973

0.906

0.966

0.833

0.904

0.787

0.880

0.976

        在对输出的结果表进行了整理后,各相关变量,从表中可以看出可见各变量的相关系数比较高,其中总分的相关系数为0.976,说明量表的再测信度很好。 

Kendall和谐系数

基本概念

          Kendall和谐系数常用于考察评分者信度。所谓评分者信度(Scorer Reliability),指多个评分者给同一批人进行评分的一致性程度。例如,在教育和心理测量中,常关心不同的评分者对同一个主观题的评分是否一致;在医学临床疗效评价中,常关心不同的医生对同一个患者的评价是否一致。当评分者人数为2时,可以采用Pearson或Spearman相关系数评价一致性;当评分者人数多于2时,可以采用Kendall和谐系数考察评分者信度。

统计原理

        Kendall和谐系数的计算公式为

        若评分中出现相同的等级,则需要计算校正的系数。公式如下:

SPSS实例分析 

        三名神经内科医生对6名重症肌无力患者分别进行肌力的评分,结果如下表所示,试评价三名医生的评分信度,计算Kendall和谐系数。

序号

医生甲

医生乙

医生丙

1

35

32

25

2

40

36

30

3

37

31

28

4

30

30

24

5

38

35

31

6

42

40

32

第1步 分析:这是一个考察几个人对同一批患者评价一致性的问题,考虑用Kendall系数来度量。

第2步 数据组织:建立“序号”、“医生甲”、“医生乙”和“医生丙”四个变量,输入数据并保存。

第3步 Kendall系数设置:按“分析→非参数检验→旧对话框→K个相关样本”顺序打开“多个关联样本检验”对话框,并按下图进行设置,之后提交系统运行。 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

世润

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值