边缘检测之Robert算子

Robert算子作为一种一阶微分算子,因其简单、计算量小且对图像细节敏感,常用于图像增强的锐化。该算子采用对角线差分,能提供较细的边缘候选点,但未经后处理时边缘可能不连续。在实际应用中,通常配合阈值处理筛选边缘,适用于速度要求高但准确度要求不那么严格的场景。

Robert算子,之前被用到了图像增强中的锐化,原因是作为一阶微分算子,Robert简单,计算量小,对细节反应敏感。

算子对边缘检测的作用是提供边缘候选点,Robert算子相比于其他3x3算子,在不经过后处理时,可以给出相对较细的边缘。

算子介绍

以下坐标新采用的是 i,j 坐标系,其中 i=y,j=x

Robert算子的形式是

Gi1001 Gj0110

Gx0110 Gy1001

与标准一阶差分不同,Robert采用对角线差分。之所以采用这个的原因有几种解释。

Gif[i+1,j]f[i,j]=[11]

Gjf[i,j+1]f[i,j]=[1|  1]

而这样进行计算,并不在相同的位置进行计算。

所以要通过使用 2×2 的标准一阶差来解决这个问题

Gi1111 Gj1111

在实际问题中,如果我们采用标准的一阶微分算子,对下面一个数字化的矩形进行横向和纵向的差分,并得出结果,红色表示算子模板中心:

可以看出,得到的边缘一部分是在内边界,一部分是外边界,并且,黄色像素点并未有计算结果,也就是,边缘候选点丢失了一个。

检验完候选点后,接下来的任务是筛选,筛选算法有很多,但最简单的是阈值处理,即超过阈值的为边缘,否则为噪声,或非边缘,这样做的缺点是不准确,有点是速度极快。计算量相当小,在速度要求较高的但准确度要求不高的地方,可以使用Robert加阈值的简单处理。得到边缘。

参考文献

Roberts cross
灰度图像–图像分割 Robert算子

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值