小学加减法 -- 给隔壁小朋友做题玩

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>

int main(){

    FILE *fp;
    errno_t err;
    char fileName[20] = "D:\\math.doc";
    err = fopen_s(&fp, fileName, "w");

    srand((int)time(0));
    int a,b,r;
    int c = 0;
    for (int i = 0; i < 3000; i++){
        a = (int)(90 * rand() / (RAND_MAX + 1.0)) + 10;
        b = (int)(90 * rand() / (RAND_MAX + 1.0)) + 10;
        r = (int)(100 * rand() / (RAND_MAX + 1.0));
        c++;
        if (r % 2 == 0){
            if (a < b){
                int t = a;
                a = b;
                b = t;
            }
            fprintf(fp, "%2d - %2d =   \t", a, b);
        }
        else{
            fprintf(fp, "%2d + %2d =   \t", a, b);
        }

        if (c % 3 == 0){
            fprintf(fp, "\n");
        }
        else{
            fprintf(fp, "\t");
        }
    }
    fclose(fp);

    return 0;
}
数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值