Cohen-Sutherland线段裁剪算法

本文介绍了一种基于 Cohen-Sutherland 裁剪算法的实现方式,该算法用于计算机图形学中裁剪二维线段。通过计算每个线段端点相对于裁剪窗口的位置,进而判断线段是否完全在窗口内、完全在窗口外还是部分在窗口内,并对部分在窗口内的线段进行裁剪。
摘要由CSDN通过智能技术生成

出处:http://blog.csdn.net/liaojinyu282/article/details/6010253


通过一个矩形的裁剪区域将整个屏幕分成9个部分,并为每一个部分赋予相应的区域码,然后根据端点的位置确定这个端点的区域码。

先判断能否完全接受或者完全排除一条线段,若以上2个判断无法直接得出,则逐步裁剪,选取一个位于裁剪区外的端点,把端点的区域码和裁剪边界的区域码进行逻辑与运算,若结果为真,则端点在该裁剪边界外部,这时将端点移向线段和该边界的交点处,如此循环,直到裁剪结束。

代码基本和书上一样,加了点自己的注释


#include <Windows.h>
#include <gl/glut.h>
//
//区域码
const GLint leftBitCode=0x1;
const GLint rightBitCode=0x2;
const GLint buttonBitCode=0x4;
const GLint topBitCode=0x8;
GLint winWidth=640,winHeight=480;
class screenPT
{
public:
	GLfloat x,y;
};
inline GLint inside(GLint code){return GLint(!code);}	//判断点是否在裁剪区内
inline GLint reject(GLint code1,GLint code2){return GLint(code1&code2);}	//判断能否完全排除一条线段
inline GLint accept(GLint code1,GLint code2){return GLint(!(code1 | code2));}	//判断能否完全接受一条线段
inline void swapPT(screenPT& a,screenPT& b){screenPT t=a;a=b;b=t;}	//交换两个点
inline void swapCode(GLubyte& a,GLubyte& b){GLubyte t=a;a=b;b=t;}	//交换两个区域码
//确定一个点所在位置的区域码
GLubyte encode(const screenPT& p,const screenPT& winMin,const screenPT& winMax)
{
	GLubyte code=0x00;
	if(p.x<winMin.x)
		code |= leftBitCode;
	if(p.x>winMax.x)
		code |= rightBitCode;
	if(p.y<winMin.y)
		code |= buttonBitCode;
	if(p.y>winMax.y)
		code |= topBitCode;
	return code;
}
//在屏幕上画一条未裁剪的线,由裁剪函数调用
void drawOneLine(const screenPT& a,const screenPT& b)
{
	glBegin(GL_LINES);
		glVertex2f(a.x,a.y);
		glVertex2f(b.x,b.y);
	glEnd();
}
//裁剪函数
void lineClip(screenPT winMin,screenPT winMax,screenPT lineBegin,screenPT lineEnd)
{
	GLubyte code1,code2;	//保存两个端点的区域码
	GLboolean done=false,plotLine=false;	//判断裁剪是否结束和是否要绘制直线
	GLfloat k;				//斜率
	while(!done)
	{
		code1 = encode(lineBegin,winMin,winMax);
		code2 = encode(lineEnd,winMin,winMax);
		if(accept(code1,code2))			//当前直线能完全绘制
		{
			done=true;
			plotLine=true;
		}
		else
		{
			if(reject(code1,code2))		//当前直线能完全排除
				done = true;
			else
			{
				if(inside(code1))	//若lineBegin端点在裁剪区内则交换两个端点使它在裁剪区外
				{
					swapPT(lineBegin,lineEnd);
					swapCode(code1,code2);
				}
				//计算斜率
				if(lineBegin.x != lineEnd.x)
					k = (lineEnd.y-lineBegin.y)/(lineEnd.x-lineBegin.x);
				//开始裁剪,以下与运算若结果为真,
				//则lineBegin在边界外,此时将lineBegin移向直线与该边界的交点
				if(code1 & leftBitCode)
				{
					lineBegin.y += (winMin.x-lineBegin.x)*k;
					lineBegin.x = winMin.x;
				}
				else if(code1 & rightBitCode)
				{
					lineBegin.y += (winMax.x-lineBegin.x)*k;
					lineBegin.x = winMax.x;
				}
				else if(code1 & buttonBitCode)
				{
					if(lineBegin.x != lineEnd.x)
						lineBegin.x += (winMin.y-lineBegin.y)/k;
					lineBegin.y = winMin.y;
				}
				else if(code1 & topBitCode)
				{
					if(lineBegin.x != lineEnd.x)
						lineBegin.x += (winMax.y-lineBegin.y)/k;
					lineBegin.y = winMax.y;
				}
			}
		}
	}
	if(plotLine)
		drawOneLine(lineBegin,lineEnd);	//绘制裁剪好的直线
}
//
void rect(screenPT winMin,screenPT winMax)
{
	glBegin(GL_LINE_LOOP);
		glVertex2f(winMin.x,winMin.y);
		glVertex2f(winMax.x,winMin.y);
		glVertex2f(winMax.x,winMax.y);
		glVertex2f(winMin.x,winMax.y);
	glEnd();
}
void init()
{
	glViewport(0,0,winWidth,winHeight);
	glClearColor(1.0,1.0,1.0,0.0);
	glMatrixMode(GL_PROJECTION);
	glLoadIdentity();
	gluOrtho2D(0,winWidth,0,winHeight);
	glMatrixMode(GL_MODELVIEW);
}
void display()
{
	screenPT winMin,winMax,lineBegin,lineEnd;
	winMin.x=100.0;	winMin.y=50.0;
	winMax.x=400.0;	winMax.y=300.0;
	lineBegin.x=0.0;	lineBegin.y=0.0;
	lineEnd.x=winWidth;	lineEnd.y=winHeight;
	glClear(GL_COLOR_BUFFER_BIT);
	glColor3f(0.0,0.0,0.0);
	rect(winMin,winMax);	//为裁剪区域绘制一个边框
	lineClip(winMin,winMax,lineBegin,lineEnd);	
	lineBegin.y=240.0;	lineEnd.y=240.0;
	lineClip(winMin,winMax,lineBegin,lineEnd);	
	lineBegin.x=320.0;	lineBegin.y=0.0;
	lineEnd.x=320.0;	lineEnd.y=winHeight;
	lineClip(winMin,winMax,lineBegin,lineEnd);
	glFlush();
}
int main(int argc,char** argv)
{
	glutInit(&argc,argv);
	glutInitWindowPosition(100,100);
	glutInitWindowSize(winWidth,winHeight);
	glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
	glutCreateWindow("my app");
	init();
	glutDisplayFunc(display);
	glutMainLoop();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值