原文:http://www.voidcn.com/blog/hearthougan/article/p-6633632.html
本文首先简单介绍CNN的结构,并不作详细介绍,若需要了解推荐看CS231n课程笔记翻译:卷积神经网络笔记。本文只要讲解CNN的反向传播,CNN的反向传播,其实并不是大多所说的和全连接的BP类似,CNN的全连接部分的BP是与它相同,但是CNN中卷积--池化、池化--卷积部分的BP是不一样的,仔细推导,还是有很多细节地方需要思考的,比如1、在前向传播的过程中,卷积层的输入,是通过卷积核与前一层的输出特征图卷积得来的,那么在反向传播的过程中该怎么处理?这个就与全连接神经网络不同了。2、由于在前向传播的时候,池化层会对前一层卷积层进行放缩,那么从池化层到卷积层BP的时候,小尺度的池化层怎么把误差反传到大尺度的卷积层(这里的大小是一般而言,卷积层一张特征图经池化之后尺度会变小)?这个就与全连接神经网络完全不同!3、公式推导中,或者某些库的函数实现过程中,卷积核为什么要翻转180度?ps.本文是根据汇报的PPT更改,里面有很多图和文字就直接截图了,里面的每一个公式都是我和F.Tao讨论和推导过的,如有错误欢迎指正。
还是先首先贴一张CNN结构图吧,下面这张图个人认为是结构很清晰的,每一层是什么,以及卷积层+池化层和全连接层在做什么工作都表达的很好,来源Google搜索。
要明白卷积操作是用来干嘛的,是用来提取特征的,反向传播的意义又是什么?因为初始的时候卷积核的值都是随机设定的,我们可以根据前向传播的预测结果,进行误差分析,不断地修改卷积核的值,使得更好的提取特征,就是反向传播的意义。