【Tensorflow】tf.import_graph_def

tf.import_graph_def

tf.import_graph_def(
    graph_def,
    input_map=None,
    return_elements=None,
    name=None,
    op_dict=None,
    producer_op_list=None
)

定义: tensorflow/python/framework/importer.py.

参考:    Building Graphs > Utility functions

将图从graph_def导入到当前默认图中. (即将舍弃的参数)

SOME ARGUMENTS ARE DEPRECATED. 它们将在未来的版本中被删除。更新说明:如果你需要此特性请在 https://github.com/tensorflow/tensorflow/issues 提出。

这个函数提供了一种方法来导入序列化的TensorFlow GraphDef协议缓冲区,并将GraphDef中的各个对象提取为tf。张量和tf。操作对象。一旦提取出来,这些对象就会被放到当前的默认图形中。。参考tf.Graph.as_graph_def 来创建 a GraphDef proto.

参数:

  • graph_def: 包含要导入到默认图中的操作的GraphDef proto。
  • input_map: 将graph_def中的输入名称(作为字符串)映射到张量对象的字典。输入图中指定的输入张量的值将被重新映射到相应的张量值。
  • return_elements: 在graph_def中包含操作名的字符串列表,将作为operationobject返回;和/或graph_def中的张量名称,它们将作为张量对象返回。
  • name: (可选.) 将前缀放在graph_def中名称前面的前缀。注意,这并不适用于导入的函数名。默认为"import".
  • op_dict: (可选.) 已弃用,请勿使用
  • producer_op_list: (可选.) 一个OpList原型,带有(可能是剥离的)图表生产者使用的OpDefs列表。如果提供了,那么根据producer_op_list的默认值,在graph_def中无法识别的ops attrs将被删除。这将允许稍后的二进制文件生成更多的graphdef被早期的二进制文件所接受。

返回:

   从导入的图中得到的与return_element中的名称相对应的操作和/或张量对象的列表。

错误类型:

  • TypeError: 如果graph_def不是GraphDef proto, input_map不是字典映射字符串到Tensorobjects,或者return_elements不是字符串列表。
  • ValueError: 如果input_map,或者return_elements包含在graph_def中没有出现的名称,或者graph_def格式不好(例如,它指的是一个未知张量)。
将这两个代码结合import cv2 import numpy as np import urllib.request import tensorflow as tf # 下载DeepLabv3+模型权重文件 model_url = "http://download.tensorflow.org/models/deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz" tar_filename = "deeplabv3_mnv2_pascal_train_aug.tar.gz" urllib.request.urlretrieve(model_url, tar_filename) # 解压缩 with tarfile.open(tar_filename, "r:gz") as tar: tar.extractall() model_filename = "deeplabv3_mnv2_pascal_train_aug/frozen_inference_graph.pb" # 加载模型 graph = tf.Graph() with graph.as_default(): od_graph_def = tf.GraphDef() with tf.io.gfile.GFile(model_filename, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') # 读取图像 image_path = "your_image.jpg" image = cv2.imread(image_path) # 进行图像分割 with tf.compat.v1.Session(graph=graph) as sess: input_tensor = graph.get_tensor_by_name('ImageTensor:0') output_tensor = graph.get_tensor_by_name('SemanticPredictions:0') output = sess.run(output_tensor, feed_dict={input_tensor: image}) # 解码并可视化分割结果 segmentation_mask = np.squeeze(output) segmentation_mask = np.uint8(segmentation_mask) segmentation_mask = cv2.resize(segmentation_mask, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST) # 显示原始图像和分割结果 cv2.imshow("Image", image) cv2.imshow("Segmentation Mask", segmentation_mask) cv2.waitKey(0) cv2.destroyAllWindows() model1 = models.CellposeModel(gpu=True, model_type='livecell') model2 = models.Cellpose(gpu=True,model_type='nuclei') model3= models.Cellpose(gpu=True,model_type='cyto2') 集成DeepLabv3+模型和cellpose模型
最新发布
07-14
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值