等价矩阵、相似矩阵、合同矩阵

合同矩阵,又称为相似矩阵,指的是存在一个可逆矩阵P使得满足条件P^-1AP=B的两个方阵A和B。这里A和B被认为是合同的,P称为它们的合同变换矩阵。这意味着A和B具有相同的特征值,并且可以通过一个相似变换相互转换。 举例来说,假设我们有两个2x2的矩阵: A = \(\begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}\) 和 B = \(\begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}\) 我们想要找到一个可逆矩阵P,使得P^-1AP = B。首先,我们需要对矩阵A进行特征值分解,找到A的特征值和对应的特征向量。A的特征多项式是: det(A - λI) = det(\(\begin{bmatrix} 1-λ & 2 \\ 2 & 5-λ \end{bmatrix}\)) = (1-λ)(5-λ) - 4 = λ^2 - 6λ + 1 = 0 解这个二次方程得到A的特征值λ1 = 1和λ2 = 5。 对于每个特征值,我们求解(A - λI)x = 0来找到对应的特征向量。对于λ1 = 1,解得特征向量v1 = \(\begin{bmatrix} -2 \\ 1 \end{bmatrix}\);对于λ2 = 5,解得特征向量v2 = \(\begin{bmatrix} 1 \\ 2 \end{bmatrix}\)。 我们可以使用这两个特征向量来构造合同变换矩阵P: P = \(\begin{bmatrix} -2 & 1 \\ 1 & 2 \end{bmatrix}\) 注意这里的特征向量不是唯一的,任何非零倍数的特征向量都可以,但需要保证它们构成P的列向量是线性独立的。我们现在检查P是否可逆,由于它的列向量线性无关,P是可逆的。 接下来,我们计算P^-1AP是否等于B: P^-1 = \(\frac{1}{(-2)\cdot2 - 1\cdot1} \begin{bmatrix} 2 & -1 \\ -1 & -2 \end{bmatrix}\) = \(\begin{bmatrix} -2/5 & 1/5 \\ 1/5 & 2/5 \end{bmatrix}\) 计算P^-1AP: P^-1AP = \(\begin{bmatrix} -2/5 & 1/5 \\ 1/5 & 2/5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 1 & 2 \end{bmatrix}\) 通过矩阵乘法计算,最终我们可以得到: P^-1AP = \(\begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}\) = B 这个结果证明了矩阵A和B是合同的,并且P是它们的合同变换矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值