一.矩阵的合同关系的定义
A,B为两个n阶对称方阵,若存在一个可逆方阵,使得
C'AC=B(C'代表的是C的转置矩阵)
称A与B是合同的。
任意一实对称方阵都合同与一个对角方阵。
二.合同对角化的方法(初等行列变化)
想要求出矩阵C,可以构造(A,E)矩阵当把它A转化成了对角矩阵Λ,E就变成了C',这样就求出了矩阵C。
注:(A,E)需要就行成对的初等行变化和初等列变化,例如一次变化c1+c2,还需要r1+r2(第二列加到第一列,第二行加到第一行,行变化和列变化的顺序不影响最后的结果)。
其实很容易发现列变化对初始的E矩阵其实是无效的,也就是说E只进行了初等行变化,也就是相当于左乘了矩阵,一次列变化就相当于乘以了一个初等矩阵,这一系列初等矩阵的乘积的结果就是C',也就是为什么最后当A矩阵变成对角矩阵的时候,E矩阵就已经变成了C'(A是既左乘了又右乘了,而E就是行变化相当于左乘,而左乘的结果为C',所以E变成了C')。
拓展的一点: