【Bert】(一)使用场景

本文介绍了BERT模型在NLP领域的应用,包括序列标注(命名实体识别,词性标注),文本分类,句子关系判断(蕴含与矛盾识别,相似度计算)以及生成式任务(机器翻译,问答系统,文本摘要)。通过官方代码示例,详细阐述了各个任务的数据标注、处理方法及原理。重点讨论了官方给出的句子蕴含判断和问答系统实例,并计划探讨命名实体识别任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:https://arxiv.org/pdf/1810.04805.pdf

官方代码:GitHub - google-research/bert: TensorFlow code and pre-trained models for BERT

任务总结(归纳方式有待改善)

1、序列标注:分词,词性标注,命名实体识别(NER)

命名实体识别:找出一句话中的感兴趣实体,例如找一句话中的地址名,人名等。

分词:(还在学习中,请参考NLP ---分词详解(常见的五种分词技术二)_进击的菜鸟-CSDN博客_分词)。

词性标注:例如找出一句话中的名词,动词等。

2、分类任务:文本分类,情感计算

文本分类:例如判断淘宝的评价为正面的还是负面的。

情感计算:(还在学习中)。

3、句子关系判断:entailment(分类为蕴含或矛盾),相似度计算

entailment:(还在学习中)

相似度计算:例如判断两句话是否是同一个意思。

4、生成式任务:机器翻译,问答系统,文本摘要

机器翻译:(还在学习中)

问答系统:官方例子中,给定一句话和针对这段话的一个提问,答案是这段话中的一部分内容。这里不需要提炼概括。真实的问答系统什么样还不清楚,才开始学习NLP。

文本摘要:(还在学习中)

接下来的文章中主要讲解以下任务:

(1)官方例子:两句话是否含义相同

(2)官方例子:问答系统。给定一句话和针对这段话的一个提问,答案是这段话中的一部分内容。这里不需要提炼概括。

(3)命名实体识别(NER-BiLstm-CRF),一句话中找出地名、人名等。

每个任务按照:数据-->标注-->方法-->原理讲解。这样的顺序进行讲解。

参考

NLP的四大类任务 - FromZeroToOne - 博客园

自然语言处理(NLP)一些任务的总结 - 简书

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值