矩阵快速幂


复杂度为o(n^3logk)

/*
求 a^k % mod,其中a是n*n的矩阵
*/
const int mod = 10000;
const int maxn = 2;
_LL k;
int n;

struct matrix
{
    _LL mat[maxn][maxn];
} a,res;
matrix mul(matrix x, matrix y)
{
    matrix tmp;
    memset(tmp.mat,0,sizeof(tmp.mat));
    for(int i = 0; i < n; i++)
    {
        for(int k = 0; k < n; k++)
        {
            if(x.mat[i][k] == 0) continue; //小小的优化。
            for(int j = 0; j < n; j++)
            {
                tmp.mat[i][j] += x.mat[i][k] * y.mat[k][j];
                if(tmp.mat[i][j] >= mod)
                    tmp.mat[i][j] %= mod;
            }
        }
    }
    return tmp;
}

void solve()
{
	for(int i = 0; i < n; i++)
		for(int j = 0; j < n; j++)
			res.mat[i][j] = (i == j); //初始化为单位矩阵
    while(k)
    {
        if(k & 1)
            res = mul(res,a);
        a = mul(a,a);
        k >>= 1;
    }
}


http://poj.org/problem?id=3070

题意:当n非常大时,求斐波那契数列的第n项。矩阵快速幂模板。


#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#define LL long long
#define _LL __int64
#define eps 1e-8

using namespace std;

const int mod = 10000;
struct matrix
{
    _LL mat[2][2];
}a,res;

_LL k;
int n;

matrix mul(matrix x, matrix y)
{
    matrix tmp;
    memset(tmp.mat,0,sizeof(tmp.mat));
    for(int i = 0; i < n; i++)
    {
        for(int k = 0; k < n; k++)
        {
            if(x.mat[i][k] == 0) continue;
            for(int j = 0; j < n; j++)
            {
                tmp.mat[i][j] += x.mat[i][k] * y.mat[k][j];
                if(tmp.mat[i][j] >= mod)
                    tmp.mat[i][j] %= mod;
            }
        }
    }
    return tmp;
}

int main()
{
    while(~scanf("%I64d",&k))
    {
        if(k == -1) break;
        a.mat[0][0] = a.mat[0][1] = a.mat[1][0] = 1;
        a.mat[1][1] = 0;
        n = 2;
        for(int i = 0; i < n; i++)
        {
            for(int j = 0; j < n; j++)
            {
                if(i == j) res.mat[i][j] = 1;
                else res.mat[i][j] = 0;
            }
        }
        while(k)
        {
            if(k & 1)
                res = mul(res,a);

            a = mul(a,a);
            k >>= 1;
        }
        int ans = res.mat[0][1] % mod;
        printf("%d\n",ans);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值