凯利公式(Kelly Criterion)是一种在独立重复的随机过程中,通过优化下注比例以最大化长期复利增长率的数学策略。其核心为解决在期望收益为正的赌局中,如何分配资金以平衡风险与收益的问题,广泛应用于投资组合管理、赌博理论及信息论领域
一、凯利公式的核心思想
凯利公式的目标是:在期望净收益为正的独立重复赌局中,计算最优下注比例,使本金的长期复利增长率最大化。
它通过平衡收益与风险,避免过度下注导致的破产风险,同时充分利用有利机会。
二、公式形式
凯利公式的最优下注比例
f
∗
f^*
f∗ 为:
f
∗
=
b
⋅
p
−
q
b
f^* = \frac{b \cdot p - q}{b}
f∗=bb⋅p−q
其中:
- b b b:净赔率(赢时收益率,不含本金,例如 b = 2 b=2 b=2 表示净赚 2 倍赌注)。
- p p p:胜率(赢的概率)。
- q = 1 − p q = 1 - p q=1−p:败率(输的概率)。
三、推导过程
1. 基本假设
-
每次下注的胜率为 p p p,败率为 q = 1 − p q = 1 - p q=1−p。
-
赢时 净收益率 为 b b b,输时损失全部下注金额(即损失率为 1)。
注:假设,投入 本金 为 k k k 元,赢的时候 净赚金额 为 m 1 m1 m1 元,输的时候 净亏金额 为 m 0 m0 m0 元,那么,求净收益率 为 b b b 的方程组为:
{ k ⋅ b = m 1 k ⋅ 1 = m 0 \begin{cases} k \cdot b = m1 \\ k \cdot 1 = m0 \end{cases} {k⋅b=m1k⋅1=m0
所以: b = m 1 m 0 b= \frac{m1}{m0} b=m0m1
2. 本金变化的乘法模型
设初始本金为
C
0
C_0
C0,每次下注比例为
f
f
f。经过一次下注后:
- 赢时本金: C 1 = C 0 ⋅ ( 1 + f ⋅ b ) C_1 = C_0 \cdot (1 + f \cdot b) C1=C0⋅(1+f⋅b)
- 输时本金: C 1 = C 0 ⋅ ( 1 − f ) C_1 =C_0 \cdot (1 - f) C1=C0⋅(1−f)
经过
n
n
n 次下注(赢
W
W
W 次,输
L
L
L 次),总本金为:
C
n
=
C
0
⋅
(
1
+
f
⋅
b
)
W
⋅
(
1
−
f
)
L
C_n = C_0 \cdot (1 + f \cdot b)^W \cdot (1 - f)^L
Cn=C0⋅(1+f⋅b)W⋅(1−f)L
3. 对数增长率转换
为简化优化问题,将乘法转换为加法,取对数:
ln
(
C
n
C
0
)
=
W
⋅
ln
(
1
+
f
⋅
b
)
+
L
⋅
ln
(
1
−
f
)
\ln\left(\frac{C_n}{C_0}\right) = W \cdot \ln(1 + f \cdot b) + L \cdot \ln(1 - f)
ln(C0Cn)=W⋅ln(1+f⋅b)+L⋅ln(1−f)
长期平均对数增长率为(其中:
n
=
W
+
L
n=W+L
n=W+L):
g ( f ) = 1 n ln ( C n C 0 ) = W n ⋅ ln ( 1 + f ⋅ b ) + L n ⋅ ln ( 1 − f ) g(f) = \frac{1}{n} \ln\left(\frac{C_n}{C_0}\right) = \frac{W}{n} \cdot \ln(1 + f \cdot b) + \frac{L}{n} \cdot \ln(1 - f) g(f)=n1ln(C0Cn)=nW⋅ln(1+f⋅b)+nL⋅ln(1−f)
当 p = W n p=\frac{W}{n} p=nW(赢率,即:胜率), q = L n q=\frac{L}{n} q=nL(输率,即:败率)时:
g ( f ) = 1 n ln ( C n C 0 ) = p ⋅ ln ( 1 + f ⋅ b ) + q ⋅ ln ( 1 − f ) g(f) = \frac{1}{n} \ln\left(\frac{C_n}{C_0}\right) = p \cdot \ln(1 + f \cdot b) + q \cdot \ln(1 - f) g(f)=n1ln(C0Cn)=p⋅ln(1+f⋅b)+q⋅ln(1−f)
4. 最大化
g
(
f
)
g(f)
g(f)
对
g
(
f
)
g(f)
g(f) 关于
f
f
f 求导并令导数为零:
d
g
d
f
=
p
⋅
b
1
+
f
⋅
b
−
q
1
−
f
=
0
\frac{dg}{df} = \frac{p \cdot b}{1 + f \cdot b} - \frac{q}{1 - f} = 0
dfdg=1+f⋅bp⋅b−1−fq=0
5. 解方程求
f
∗
f^*
f∗
p
⋅
b
1
+
f
⋅
b
=
q
1
−
f
⇒
p
⋅
b
⋅
(
1
−
f
)
=
q
⋅
(
1
+
f
⋅
b
)
\frac{p \cdot b}{1 + f \cdot b} = \frac{q}{1 - f} \quad \Rightarrow \quad p \cdot b \cdot (1 - f) = q \cdot (1 + f \cdot b)
1+f⋅bp⋅b=1−fq⇒p⋅b⋅(1−f)=q⋅(1+f⋅b)
展开整理:
p
⋅
b
−
p
⋅
b
⋅
f
=
q
+
q
⋅
b
⋅
f
⇒
p
⋅
b
−
q
=
f
⋅
(
p
⋅
b
+
q
⋅
b
)
p \cdot b - p \cdot b \cdot f = q + q \cdot b \cdot f \quad \Rightarrow \quad p \cdot b - q = f \cdot (p \cdot b + q \cdot b)
p⋅b−p⋅b⋅f=q+q⋅b⋅f⇒p⋅b−q=f⋅(p⋅b+q⋅b)
解得:
f
∗
=
p
⋅
b
−
q
b
=
b
⋅
p
−
q
b
f^* = \frac{p \cdot b - q}{b} = \frac{b \cdot p - q}{b}
f∗=bp⋅b−q=bb⋅p−q
四、关键解释
-
分子 b ⋅ p − q b \cdot p - q b⋅p−q:
- b ⋅ p b \cdot p b⋅p 是“赢的期望收益”, q q q 是“输的期望损失”。
- 当 b ⋅ p > q b \cdot p > q b⋅p>q 时,赌局有利可图, f ∗ > 0 f^* > 0 f∗>0;否则不下注( f ∗ = 0 f^* = 0 f∗=0)。
-
分母 b b b:
- 将净收益标准化为比例。赔率 b b b 越高,允许的下注比例越低(高赔率伴随高风险)。
五、应用举例
场景:
- 胜率
p
=
60
%
p = 60\%
p=60%,净赔率
b
=
2
b = 2
b=2,败率
q
=
40
%
q = 40\%
q=40%。
计算:
f ∗ = 2 ⋅ 0.6 − 0.4 2 = 1.2 − 0.4 2 = 0.4 f^* = \frac{2 \cdot 0.6 - 0.4}{2} = \frac{1.2 - 0.4}{2} = 0.4 f∗=22⋅0.6−0.4=21.2−0.4=0.4
结论:每次应下注总资金的 40%。
六、注意事项
- 独立重复性:赌局需独立且可重复,胜率和赔率固定。
- 参数不确定性:实际中 p p p 和 b b b 可能未知或变动,建议保守策略(如半凯利: f ∗ / 2 f^*/2 f∗/2)。
- 避免全押:即使 f ∗ = 1 f^* = 1 f∗=1,实际中也不应全押(需考虑极端风险)。
七、总结
凯利公式通过数学推导,在复利增长框架下平衡收益与风险,为投资者提供了一种科学的资金管理工具。其核心逻辑是:在有利的赌局中,按比例下注以最大化长期增长,同时避免破产。