​凯利公式:从数学推导到实际应用的全面解析

凯利公式(Kelly Criterion)是一种在独立重复的随机过程中,通过优化下注比例以最大化长期复利增长率的数学策略。其核心为解决在期望收益为正的赌局中,如何分配资金以平衡风险与收益的问题,广泛应用于投资组合管理、赌博理论及信息论领域


一、凯利公式的核心思想

凯利公式的目标是:在期望净收益为正的独立重复赌局中,计算最优下注比例,使本金的长期复利增长率最大化
它通过平衡收益与风险,避免过度下注导致的破产风险,同时充分利用有利机会。


二、公式形式

凯利公式的最优下注比例 f ∗ f^* f 为:
f ∗ = b ⋅ p − q b f^* = \frac{b \cdot p - q}{b} f=bbpq
其中:

  • b b b:净赔率(赢时收益率,不含本金,例如 b = 2 b=2 b=2 表示净赚 2 倍赌注)。
  • p p p:胜率(赢的概率)。
  • q = 1 − p q = 1 - p q=1p:败率(输的概率)。

三、推导过程

1. 基本假设

  • 每次下注的胜率为 p p p,败率为 q = 1 − p q = 1 - p q=1p

  • 赢时 净收益率 b b b,输时损失全部下注金额(即损失率为 1)。

    :假设,投入 本金 k k k 元,赢的时候 净赚金额 m 1 m1 m1 元,输的时候 净亏金额 m 0 m0 m0 元,那么,求净收益率 b b b 的方程组为:

    { k ⋅ b = m 1 k ⋅ 1 = m 0 \begin{cases} k \cdot b = m1 \\ k \cdot 1 = m0 \end{cases} {kb=m1k1=m0

    所以: b = m 1 m 0 b= \frac{m1}{m0} b=m0m1

2. 本金变化的乘法模型
设初始本金为 C 0 C_0 C0,每次下注比例为 f f f。经过一次下注后:

  • 赢时本金 C 1 = C 0 ⋅ ( 1 + f ⋅ b ) C_1 = C_0 \cdot (1 + f \cdot b) C1=C0(1+fb)
  • 输时本金 C 1 = C 0 ⋅ ( 1 − f ) C_1 =C_0 \cdot (1 - f) C1=C0(1f)

经过 n n n 次下注(赢 W W W 次,输 L L L 次),总本金为:
C n = C 0 ⋅ ( 1 + f ⋅ b ) W ⋅ ( 1 − f ) L C_n = C_0 \cdot (1 + f \cdot b)^W \cdot (1 - f)^L Cn=C0(1+fb)W(1f)L

3. 对数增长率转换
为简化优化问题,将乘法转换为加法,取对数:
ln ⁡ ( C n C 0 ) = W ⋅ ln ⁡ ( 1 + f ⋅ b ) + L ⋅ ln ⁡ ( 1 − f ) \ln\left(\frac{C_n}{C_0}\right) = W \cdot \ln(1 + f \cdot b) + L \cdot \ln(1 - f) ln(C0Cn)=Wln(1+fb)+Lln(1f)
长期平均对数增长率为(其中: n = W + L n=W+L n=W+L):

g ( f ) = 1 n ln ⁡ ( C n C 0 ) = W n ⋅ ln ⁡ ( 1 + f ⋅ b ) + L n ⋅ ln ⁡ ( 1 − f ) g(f) = \frac{1}{n} \ln\left(\frac{C_n}{C_0}\right) = \frac{W}{n} \cdot \ln(1 + f \cdot b) + \frac{L}{n} \cdot \ln(1 - f) g(f)=n1ln(C0Cn)=nWln(1+fb)+nLln(1f)

p = W n p=\frac{W}{n} p=nW(赢率,即:胜率), q = L n q=\frac{L}{n} q=nL(输率,即:败率)时:

g ( f ) = 1 n ln ⁡ ( C n C 0 ) = p ⋅ ln ⁡ ( 1 + f ⋅ b ) + q ⋅ ln ⁡ ( 1 − f ) g(f) = \frac{1}{n} \ln\left(\frac{C_n}{C_0}\right) = p \cdot \ln(1 + f \cdot b) + q \cdot \ln(1 - f) g(f)=n1ln(C0Cn)=pln(1+fb)+qln(1f)

4. 最大化 g ( f ) g(f) g(f)
g ( f ) g(f) g(f) 关于 f f f 求导并令导数为零:
d g d f = p ⋅ b 1 + f ⋅ b − q 1 − f = 0 \frac{dg}{df} = \frac{p \cdot b}{1 + f \cdot b} - \frac{q}{1 - f} = 0 dfdg=1+fbpb1fq=0

5. 解方程求 f ∗ f^* f
p ⋅ b 1 + f ⋅ b = q 1 − f ⇒ p ⋅ b ⋅ ( 1 − f ) = q ⋅ ( 1 + f ⋅ b ) \frac{p \cdot b}{1 + f \cdot b} = \frac{q}{1 - f} \quad \Rightarrow \quad p \cdot b \cdot (1 - f) = q \cdot (1 + f \cdot b) 1+fbpb=1fqpb(1f)=q(1+fb)
展开整理:
p ⋅ b − p ⋅ b ⋅ f = q + q ⋅ b ⋅ f ⇒ p ⋅ b − q = f ⋅ ( p ⋅ b + q ⋅ b ) p \cdot b - p \cdot b \cdot f = q + q \cdot b \cdot f \quad \Rightarrow \quad p \cdot b - q = f \cdot (p \cdot b + q \cdot b) pbpbf=q+qbfpbq=f(pb+qb)
解得:
f ∗ = p ⋅ b − q b = b ⋅ p − q b f^* = \frac{p \cdot b - q}{b} = \frac{b \cdot p - q}{b} f=bpbq=bbpq


四、关键解释

  1. 分子 b ⋅ p − q b \cdot p - q bpq

    • b ⋅ p b \cdot p bp 是“赢的期望收益”, q q q 是“输的期望损失”。
    • b ⋅ p > q b \cdot p > q bp>q 时,赌局有利可图, f ∗ > 0 f^* > 0 f>0;否则不下注( f ∗ = 0 f^* = 0 f=0)。
  2. 分母 b b b

    • 将净收益标准化为比例。赔率 b b b 越高,允许的下注比例越低(高赔率伴随高风险)。

五、应用举例

场景

  • 胜率 p = 60 % p = 60\% p=60%,净赔率 b = 2 b = 2 b=2,败率 q = 40 % q = 40\% q=40%
    计算
    f ∗ = 2 ⋅ 0.6 − 0.4 2 = 1.2 − 0.4 2 = 0.4 f^* = \frac{2 \cdot 0.6 - 0.4}{2} = \frac{1.2 - 0.4}{2} = 0.4 f=220.60.4=21.20.4=0.4
    结论:每次应下注总资金的 40%

六、注意事项

  1. 独立重复性:赌局需独立且可重复,胜率和赔率固定。
  2. 参数不确定性:实际中 p p p b b b 可能未知或变动,建议保守策略(如半凯利: f ∗ / 2 f^*/2 f/2)。
  3. 避免全押:即使 f ∗ = 1 f^* = 1 f=1,实际中也不应全押(需考虑极端风险)。

七、总结

凯利公式通过数学推导,在复利增长框架下平衡收益与风险,为投资者提供了一种科学的资金管理工具。其核心逻辑是:在有利的赌局中,按比例下注以最大化长期增长,同时避免破产

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎明鱼儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值