凯利公式(Kelly Criterion)是一种用于确定在赌博或投资中最佳投注比例的数学公式。它的基本思想是通过最大化长期资本增长率来优化投资决策。凯利公式通常用于确定在不确定性下应该投入的资金比例,公式为:
f
∗
=
b
p
−
q
b
f^* = \frac{bp - q}{b}
f∗=bbp−q
其中:
- f ∗ f^* f∗是应该投注的资本比例。
- b是赔率(如果获胜,所赢得的金额与投注金额的比率)。
- p是获胜的概率。
- q是输的概率(即
q = 1 - p
)。
凯利公式的优势在于它帮助投资者避免过度投注,同时最大化潜在的投资回报。适用于具有正期望值的赌博或投资场景。
如何使用凯利公式计算最佳投注比例
当然可以!下面是一个简单的 C# 示例,展示如何使用凯利公式计算最佳投注比例。
using System;
class Program
{
static void Main()
{
// 示例参数
double odds = 2.0; // 赔率
double probabilityOfWinning = 0.55; // 获胜概率
// 计算输的概率
double probabilityOfLosing = 1 - probabilityOfWinning;
// 使用凯利公式计算最佳投注比例
double kellyFraction = (odds * probabilityOfWinning - probabilityOfLosing) / odds;
// 输出结果
Console.WriteLine($"最佳投注比例: {kellyFraction:P2}");
}
}
解释:
odds
是赔率,表示获胜时可以获得的金额比。probabilityOfWinning
是你认为获胜的概率。- 计算出的
kellyFraction
是最佳投注比例,输出格式为百分比。
你可以根据实际情况修改 odds
和 probabilityOfWinning
的值,然后运行代码来查看最佳投注比例。