NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis

这篇论文介绍了NTU RGB+D数据集,包括3D骨架、深度图等信息,并提出了一种新颖的Part_Aware LSTM Network,将身体各部位的长期记忆独立存储,用于3D人体活动分析。实验表明,该方法在不依赖骨架标准化的情况下也能有效工作,同时解决了输入中单个或多个主体的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文主要创建了The RGB+D Action Dataset ,并提出了Part_Aware LSTM Network。主要内容如下:

一:Dataset

    数据库包含3D skeletons (body joints),Masked depth maps,Full depth maps,RGB videos,IR videos. 包含3种不同角度的视图(-45,0,45)


二:

### 关于 NTU RGB+D 数据集与图卷积网络 (Graph Convolutional Network, GCN) #### 1. **NTU RGB+D 数据集概述** NTU RGB+D 是一个广泛用于动作识别研究的大规模数据集,分为两个版本:NTU RGB+D 60 和 NTU RGB+D 120。该数据集提供了多种模态的数据,包括 RGB 视频、深度图像以及骨骼坐标信息。为了生成这些数据集中的样本,需要对原始数据进行预处理并调整路径设置以适配本地存储环境[^1]。 #### 2. **图卷积网络在骨骼动作识别中的应用** 图卷积网络是一种专门设计来处理结构化数据(如图)的深度学习模型。对于基于骨架的动作识别任务,通常会构建一张时空图(Spatial-Temporal Graph),其中节点表示关节位置,边则描述了它们之间的关系。 - 特征图 \(f^t_{\text{in}}\) 定义为每个节点上的向量集合,在空间图上执行卷积操作时需重新定义采样函数和权重分配机制[^2]。 - ST-GCN(Spatio-Temporal Graph Convolutional Networks)首次提出了利用图神经网络解决动态骨架序列建模问题的方法,并成为这一领域的重要基线模型之一[^4]。 #### 3. **改进版模型 SDGCN 的介绍** 为进一步提升性能,有研究者开发了一种新的框架叫做 SDGCN(Single-Domain and Cross-Domain Spatial Temporal Graph Convolutional Networks)。此架构通过加入跨域空间图残差层及密集连接模块增强了时间维度的信息提取能力,从而更高效地捕捉复杂的运动模式[^3]。 #### 4. **实现教程与资源推荐** 以下是几个关于如何使用 Python 及 PyTorch 构建针对 NTU RGB+D 数据集训练流程的例子: ##### (a)加载数据 确保所有文件夹内的视频帧或者骨骼点都已按照标准格式整理好之后再读取进来: ```python import os def load_data(data_path): data_list = [] label_list = [] for file_name in os.listdir(data_path): if 'skeleton' in file_name: # 假设我们只关心 skeleton 文件 with open(os.path.join(data_path, file_name), 'r') as f: content = f.readlines() skeletons = parse_skeleton(content) # 自定义解析函数 data_list.append(skeletons) label_list.append(extract_label(file_name)) # 获取标签 return np.array(data_list), np.array(label_list) ``` ##### (b)搭建基础 ST-GCN 模型 这里给出一段简化后的代码片段展示核心部分: ```python class Model(nn.Module): def __init__(self, num_class=60, graph_args=None, edge_importance_weighting=True): super(Model, self).__init__() # 初始化参数... def forward(self, x): N, C, T, V, M = x.size() # 输入张量形状 # 执行一系列 gcn 卷积层计算过程... output = F.softmax(output, dim=-1) return output ``` 更多细节可参考官方 GitHub 页面或其他开源项目链接获取完整的源码文档说明。 --- ###
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值