图像中的高频分量和低频分量
形象一点说:亮度或灰度变化激烈的地方对应高频成分,如边缘;变化不大的地方对于低频成分,如大片色块区。
比如说,画个直方图,大块区域是低频,小块或离散的是高频。
把图像看成二维函数,变化剧烈的地方就对应高频,反之低频。
举个通俗易懂的例子:
一幅图象,你戴上眼镜,盯紧了一个地方看到的是高频分量。摘掉眼镜,眯起眼睛,模模糊糊看到的就是低频分量。
图像的高低频是对图像各个位置之间强度变化的一种度量方法。
低频分量:主要对整副图像的强度的综合度量。
高频分量:主要是对图像边缘和轮廓的度量。
如果一副图像的各个位置的强度大小相等,则图像只存在低频分量,从图像的频谱图上看,只有一个主峰,且位于频率为零的位置。
如果一副图像的各个位置的强度变化剧烈,则图像不仅存在低频分量,同时也存在多种高频分量,从图像的频谱上看,不仅有一个主峰,同时也存在多个旁峰。
以上的现象可以通过对傅里叶变换的公式分析得出。
以下所说的积分是对x进行的。
exp(-jwx)的数值变化是均匀的,如果对exp(-jwx)进行积分,则积分值为零.如果对exp(-jwx)乘以一个加权函数f(x),则在对f(x)exp(-jwx)进行积分,积分值不一定为零.如果exp(-jwx)的取值为1时,则对f(x)exp(-jwx)积分,既为对f(x)积分,此时f(x)exp(-jwx)最大,既频谱中的主峰.如果f(x)是常数则, 除w=0处f(x)exp(-jwx)的积分不为零外,在w不为零的其它处,f(x)exp(-jwx)的积分都为零。