PAT 1007. Maximum Subsequence Sum

【题目链接】

看完这个题目的时候我就想到了曾经做过的一个求完美数列的题目,用的是two pointers的思想,这题好像也差不多。本题的关键就是如何确定最大子序列的起始位置i和j,我们用sum变量(初始化为0)来记录元素的和,MaxSum(初始化为负数)来记录最大子序列的和,sum从第一个非负数起开始累加同时更新MaxSum,若sum累加到第k1个位置的时候小于0了,则将sum重置为0,令temp=k1+1,其中temp用来临时记录新的起始位置。如果到达第k2个位置时sum > MaxSum了,则更新MaxSum,同时将i更新为temp,j更新为k。特别值得一提的是,当第一个数为负数的时候,sum < 0则需重置sum为0,此时sum > MaxSum成立,因此MaxSum更新为0,这就引起了错误。同时,还需要注意输入数据可能为0的情况,以及当最大子序列不唯一的时候,按照题意我们应该选取起始位置的序号最小的那个。

PS:读者可以测试一下“-1 0”这样的输入数据

提交代码:

//需要注意的case:-1 0
#include <iostream>
using namespace std;

int main()
{
    int n, a[10010];
    bool isNegative = true; //记录输入的数据是否为负数
    cin >> n;
    for(int i = 0; i < n; i++)
    {
        cin >> a[i];
        if(a[i] >= 0) isNegative = false;
    }
    if(isNegative) //如果输入数据全为负数
    {
        cout << 0 << " " << a[0] << " " << a[n - 1];
        return 0;
    }
    int sum, MaxSum, i, temp, j, k, flag; //i,j分别记录最大和子序列的起始位置
    sum = i = j = k = flag = temp = 0;
    MaxSum = -1; //不要取为0,防止下面的if(sum > MaxSum)出错
    while(k < n)
    {
        sum += a[k];
        if(sum < 0) temp = k + 1, sum = 0, flag = 1;
        if(sum > MaxSum)
        {
            if(flag) i = temp, flag = 0;
            j = k;
             MaxSum = sum; //防止第一个数为负数却更新MaxSum为0,导致第二个为0时无法通过该if判断
        }
        k++;
    }
    cout << MaxSum << " " << a[i] << " " << a[j];
}



点数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值