交叉熵损失函数对b求偏导数的具体步骤

公式 (3-12) 是逻辑回归中基于交叉熵损失函数对偏置项 b b b 求导的结果。公式为:
∂ L ∂ b = 1 m ∑ i = 1 m ( y ^ i − y i ) \frac{\partial L}{\partial b} = \frac{1}{m} \sum_{i=1}^m (\hat{y}_i - y_i) bL=m1i=1m(y^iyi)

第一步:交叉熵损失函数

和公式 (3-11) 中一样,交叉熵损失函数 L L L 为:
L = − 1 m ∑ i = 1 m ( y i ln ⁡ y ^ i + ( 1 − y i ) ln ⁡ ( 1 − y ^ i ) ) L = -\frac{1}{m} \sum_{i=1}^m \left( y_i \ln \hat{y}_i + (1 - y_i) \ln (1 - \hat{y}_i) \right) L=m1i=1m(yilny^i+(1yi)ln(1y^i))

其中, y ^ i \hat{y}_i y^i 是模型对第 i i i 个样本的预测值,表示为:
y ^ i = 1 1 + e − ( w T x i + b ) \hat{y}_i = \frac{1}{1 + e^{-(w^T x_i + b)}} y^i=1+e(wTxi+b)1

第二步:对偏置项 b b b 求导

我们现在需要对损失函数 L L L 对偏置项 b b b 求导。为了便于推导,首先针对单个样本 i i i 的损失函数 L i L_i Li
L i = − ( y i ln ⁡ y ^ i + ( 1 − y i ) ln ⁡ ( 1 − y ^ i ) ) L_i = - \left( y_i \ln \hat{y}_i + (1 - y_i) \ln (1 - \hat{y}_i) \right) Li=(yilny^i+(1yi)ln(1y^i))

b b b 求偏导:
∂ L i ∂ b = − ( y i y ^ i ∂ y ^ i ∂ b − 1 − y i 1 − y ^ i ∂ y ^ i ∂ b ) \frac{\partial L_i}{\partial b} = - \left( \frac{y_i}{\hat{y}_i} \frac{\partial \hat{y}_i}{\partial b} - \frac{1 - y_i}{1 - \hat{y}_i} \frac{\partial \hat{y}_i}{\partial b} \right) bLi=(y^iyiby^i1y^i1yiby^i)

第三步:求 y ^ i \hat{y}_i y^i b b b 的导数

根据 Sigmoid 函数的定义, y ^ i = 1 1 + e − ( w T x i + b ) \hat{y}_i = \frac{1}{1 + e^{-(w^T x_i + b)}} y^i=1+e(wTxi+b)1,使用链式法则对 b b b 求导:
∂ y ^ i ∂ b = y ^ i ( 1 − y ^ i ) \frac{\partial \hat{y}_i}{\partial b} = \hat{y}_i (1 - \hat{y}_i) by^i=y^i(1y^i)

第四步:代入并简化

∂ y ^ i ∂ b = y ^ i ( 1 − y ^ i ) \frac{\partial \hat{y}_i}{\partial b} = \hat{y}_i (1 - \hat{y}_i) by^i=y^i(1y^i) 代入原偏导数公式中:
∂ L i ∂ b = − ( y i y ^ i y ^ i ( 1 − y ^ i ) − 1 − y i 1 − y ^ i ( 1 − y ^ i ) y ^ i ) \frac{\partial L_i}{\partial b} = - \left( \frac{y_i}{\hat{y}_i} \hat{y}_i (1 - \hat{y}_i) - \frac{1 - y_i}{1 - \hat{y}_i} (1 - \hat{y}_i) \hat{y}_i \right) bLi=(y^iyiy^i(1y^i)1y^i1yi(1y^i)y^i)

经过化简:
∂ L i ∂ b = ( y ^ i − y i ) \frac{\partial L_i}{\partial b} = (\hat{y}_i - y_i) bLi=(y^iyi)

第五步:对整个数据集求和并平均

为了得到整体的梯度,我们对所有样本进行求和,并除以样本数 m m m
∂ L ∂ b = 1 m ∑ i = 1 m ( y ^ i − y i ) \frac{\partial L}{\partial b} = \frac{1}{m} \sum_{i=1}^m (\hat{y}_i - y_i) bL=m1i=1m(y^iyi)

这就是公式 (3-12) 的推导结果。

直观理解:

  • y ^ i − y i \hat{y}_i - y_i y^iyi 是模型的预测值与实际标签之间的误差。
  • 由于偏置 b b b 影响所有样本的输出,而不依赖于输入特征 x i x_i xi,所以对 b b b 求导时没有像对 w w w 求导那样乘以 x i x_i xi,只留下了误差 y ^ i − y i \hat{y}_i - y_i y^iyi 的累积平均。

这个结果用于梯度下降法,调整偏置 b b b 以最小化损失函数 L L L

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值