正常返和不可约是马尔可夫链中的两个不同概念,虽然它们常常同时出现,但描述的是不同的性质。下面详细解释它们的区别和联系。
1. 不可约(Irreducibility)
定义:
- 马尔可夫链是不可约的,表示从任意状态 i i i 出发,经过有限步转移,总能以正概率到达任意另一个状态 j j j。
- 数学表述:
∃ t ≥ 0 , 使得 P i j t > 0 , ∀ i , j ∈ S \exists t \geq 0, \, \text{使得} \, P^t_{ij} > 0, \quad \forall i, j \in S ∃t≥0,使得Pijt>0,∀i,j∈S
这里 P i j t P^t_{ij} Pijt 是从状态 i i i 出发在 t t t 步后到达状态 j j j 的概率。
直观理解:
- 系统的状态之间全部连通,没有孤立的状态子集。
- 状态空间 S S S 是“单一连通”的,系统可以从任何状态到达其他状态。
例子:
- 在一个马尔可夫链中,如果状态 1 可以到状态 2,状态 2 也能回到状态 1,那么这两个状态是连通的。
- 如果对于所有状态 i i i 和 j j j,这样的连通性都存在,则整个链是不可约的。
2. 正常返(Positive Recurrence)
定义:
- 马尔可夫链是正常返的,表示系统从任意状态 i i i 出发,返回到该状态的平均时间是有限的。
- 数学表述:
- 定义首次返回到状态
i
i
i 的时间
T
i
T_i
Ti,如果:
E [ T i ∣ X 0 = i ] < ∞ , ∀ i ∈ S E[T_i \mid X_0 = i] < \infty, \quad \forall i \in S E[Ti∣X0=i]<∞,∀i∈S
则称该马尔可夫链是正常返的。
- 定义首次返回到状态
i
i
i 的时间
T
i
T_i
Ti,如果:
直观理解:
- 系统从某个状态 i i i 出发,返回到该状态的概率为正,并且返回所需的平均时间是有限的。
- 如果返回时间趋于无穷大或返回的概率为零,那么系统就不是正常返的。
例子:
- 如果系统不断向某一方向漂移(例如随机游走中,向右漂移且不返回),返回到初始状态的平均时间会趋于无穷大,这时系统不是正常返的。
3. 区别总结
性质 | 不可约 | 正常返 |
---|---|---|
定义 | 状态之间是连通的,可以到达任何状态。 | 系统返回到状态的平均时间是有限的。 |
关注点 | 关注状态之间是否可以连通。 | 关注状态是否可以在有限时间内返回,且概率为正。 |
数学描述 | ∃ t ≥ 0 , P i j t > 0 \exists t \geq 0, P^t_{ij} > 0 ∃t≥0,Pijt>0 | E [ T i ∣ X 0 = i ] < ∞ E[T_i \mid X_0 = i] < \infty E[Ti∣X0=i]<∞ |
本质 | 连通性:状态之间的可达性。 | 返回性:状态返回的时间和概率。 |
系统行为 | 状态之间无孤立或分裂的子集。 | 状态可以有限时间内返回自身。 |
示例 | 所有状态连成一体,彼此可达。 | 若某些状态永远不会返回,或返回时间无限大,则非正常返。 |
4. 两者的联系
-
不可约 ≠ 正常返:
- 不可约性保证了状态之间可以相互到达,但并不保证返回到某个状态的时间是有限的。
- 例如,在某些随机游走模型中,系统可以到达所有状态(不可约),但系统可能无法返回到初始状态(非正常返)。
-
正常返 → 一定不可约?
- 不一定! 正常返是对单个状态的性质描述,但整体链可能仍然是可分割的。例如一个状态空间包含两个互不连通的子集,各自独立地满足正常返,但整个链是可约的。
-
结合定理 19.3:
-
定理 19.3 说明:不可约、非周期且正常返的马尔可夫链具有唯一平稳分布。
-
所以:
- 不可约保证了状态之间的连通性;
- 正常返保证了系统可以返回自身状态且返回时间有限;
- 两者结合使得系统收敛到唯一的平稳分布。
-
5. 举例说明
例子 1:不可约但非正常返
- 一个随机游走链:
在无穷状态空间 { 0 , 1 , 2 , … } \{0, 1, 2, \dots\} {0,1,2,…},系统以相等的概率向左或向右移动。- 状态之间是连通的(不可约)。
- 但系统可能永远无法返回到初始状态,返回时间趋于无穷大,因此系统非正常返。
例子 2:不可约且正常返
- 有限状态空间内的平衡随机游走:
在有限状态空间 { 1 , 2 , 3 } \{1, 2, 3\} {1,2,3},系统状态之间有转移概率。- 状态之间是连通的(不可约)。
- 系统一定会在有限时间内返回到某个状态,且返回时间有限,因此正常返。
6. 小结
- 不可约:关注状态之间的可达性,保证状态空间是“连通”的。
- 正常返:关注系统返回到某个状态的平均时间是否有限。
- 两者的结合(不可约 + 正常返)是保证系统存在唯一平稳分布的必要条件。