【Metropolis-Hastings 算法】基本原理 3.满条件分布 理解

本文是将文章【Metropolis-Hastings 算法】中基本原理部分的“3.满条件分布”拿出来做一个解析, 便于初学者更好的理解。


Metropolis-Hastings 算法中的满条件分布

1. 满条件分布的定义

满条件分布(Full Conditional Distribution)描述的是一个随机变量或一组变量在其余变量给定条件下的概率分布。假设目标分布是一个 k k k 维联合分布 p ( x ) p(x) p(x),其中:
x = ( x 1 , x 2 , ⋯   , x k ) T x = (x_1, x_2, \cdots, x_k)^T x=(x1,x2,,xk)T

满条件分布的形式

对于一个变量集合 x I = { x i : i ∈ I } x_I = \{x_i : i \in I\} xI={xi:iI} I ⊆ { 1 , 2 , ⋯   , k } I \subseteq \{1, 2, \cdots, k\} I{1,2,,k})和补集变量 x − I = { x i : i ∉ I } x_{-I} = \{x_i : i \notin I\} xI={xi:i/I},满条件分布定义为:
p ( x I ∣ x − I ) = p ( x ) ∫ p ( x ) d x I ∝ p ( x ) (19.45) p(x_I | x_{-I}) = \frac{p(x)}{\int p(x) dx_I} \propto p(x) \tag{19.45} p(xIxI)=p(x)dxIp(x)p(x)(19.45)

  • 含义
    • 满条件分布 p ( x I ∣ x − I ) p(x_I | x_{-I}) p(xIxI) 描述的是在 x − I x_{-I} xI 给定时,变量 x I x_I xI 的分布;
    • 它与联合概率分布 p ( x ) p(x) p(x) 成正比,可以通过联合分布的表达式直接计算(省略归一化常数)。

2. 满条件分布的重要性质

性质 1:满条件分布的比值

对于任意 x , x ′ ∈ X x, x' \in X x,xX 和任意 I ⊆ K I \subseteq K IK,有:
p ( x I ′ ∣ x − I ′ ) p ( x I ∣ x − I ) = p ( x ′ ) p ( x ) (19.46) \frac{p(x_I' | x_{-I}')}{p(x_I | x_{-I})} = \frac{p(x')}{p(x)} \tag{19.46} p(xIxI)p(xIxI)=p(x)p(x)(19.46)

  • 推导过程

    1. 满条件分布定义为 p ( x I ∣ x − I ) ∝ p ( x ) p(x_I | x_{-I}) \propto p(x) p(xIxI)p(x)
    2. 满条件分布的比值:
      p ( x I ′ ∣ x − I ′ ) p ( x I ∣ x − I ) = p ( x ′ ) / Z ′ p ( x ) / Z = p ( x ′ ) p ( x ) \frac{p(x_I' | x_{-I}')}{p(x_I | x_{-I})} = \frac{p(x') / Z'}{p(x) / Z} = \frac{p(x')}{p(x)} p(xIxI)p(xIxI)=p(x)/Zp(x)/Z=p(x)p(x)
      (其中 Z Z Z Z ′ Z' Z 是归一化常数,可以相互抵消)。
  • 意义

    • 满条件分布的比值直接等于联合分布 p ( x ) p(x) p(x) 的比值;
    • 利用满条件分布的比值,可以更高效地计算联合概率分布的比值。
性质 2:简化 Metropolis-Hastings 算法

在 Metropolis-Hastings 算法中,通过性质 (19.46),可以将联合概率分布的比值 p ( x ′ ) p ( x ) \frac{p(x')}{p(x)} p(x)p(x) 转换为满条件分布的比值 p ( x I ′ ∣ x − I ′ ) p ( x I ∣ x − I ) \frac{p(x_I' | x_{-I}')}{p(x_I | x_{-I})} p(xIxI)p(xIxI)。这种转换通常可以大幅简化计算,因为满条件分布通常比联合分布更易求解。


3. 示例:联合分布求满条件分布

联合分布

设两个变量 x 1 x_1 x1 x 2 x_2 x2 的联合概率分布的密度函数为:
p ( x 1 , x 2 ) ∝ exp ⁡ [ − 1 2 ( x 1 − 1 ) 2 ( x 2 − 1 ) 2 ] p(x_1, x_2) \propto \exp \left[ -\frac{1}{2} (x_1 - 1)^2 (x_2 - 1)^2 \right] p(x1,x2)exp[21(x11)2(x21)2]

求满条件分布 p ( x 1 ∣ x 2 ) p(x_1 | x_2) p(x1x2)
  1. 根据满条件分布定义
    p ( x 1 ∣ x 2 ) ∝ p ( x 1 , x 2 ) p(x_1 | x_2) \propto p(x_1, x_2) p(x1x2)p(x1,x2)

  2. 代入联合分布
    p ( x 1 ∣ x 2 ) ∝ exp ⁡ [ − 1 2 ( x 1 − 1 ) 2 ( x 2 − 1 ) 2 ] p(x_1 | x_2) \propto \exp \left[ -\frac{1}{2} (x_1 - 1)^2 (x_2 - 1)^2 \right] p(x1x2)exp[21(x11)2(x21)2]

  3. 化简形式

    • 对于 x 1 x_1 x1,这与正态分布的概率密度函数形式一致:
      p ( x 1 ∣ x 2 ) ∝ N ( 1 , ( x 2 − 1 ) − 2 ) p(x_1 | x_2) \propto N\left(1, (x_2 - 1)^{-2}\right) p(x1x2)N(1,(x21)2)
    • 即:
      p ( x 1 ∣ x 2 ) ∼ 正态分布 ( 均值 = 1 , 方差 = ( x 2 − 1 ) − 2 ) p(x_1 | x_2) \sim \text{正态分布}(\text{均值}=1, \text{方差}=(x_2 - 1)^{-2}) p(x1x2)正态分布(均值=1,方差=(x21)2)
  4. 解释

    • x 2 x_2 x2 是一个参数,决定了条件分布 p ( x 1 ∣ x 2 ) p(x_1 | x_2) p(x1x2) 的方差;
    • 方差随 x 2 x_2 x2 增大而减小。
求满条件分布 p ( x 2 ∣ x 1 ) p(x_2 | x_1) p(x2x1)

同理:
p ( x 2 ∣ x 1 ) ∝ exp ⁡ [ − 1 2 ( x 2 − 1 ) 2 ( x 1 − 1 ) 2 ] p(x_2 | x_1) \propto \exp \left[ -\frac{1}{2} (x_2 - 1)^2 (x_1 - 1)^2 \right] p(x2x1)exp[21(x21)2(x11)2]

  • 化简后:
    p ( x 2 ∣ x 1 ) ∼ 正态分布 ( 均值 = 1 , 方差 = ( x 1 − 1 ) − 2 ) p(x_2 | x_1) \sim \text{正态分布}(\text{均值}=1, \text{方差}=(x_1 - 1)^{-2}) p(x2x1)正态分布(均值=1,方差=(x11)2)

4. 满条件分布在 Metropolis-Hastings 算法中的作用

  1. 简化联合分布的计算

    • 满条件分布可以通过直接代入联合分布的表达式计算,避免对联合分布积分或归一化的繁琐过程。
  2. 优化接受概率的计算

    • 在 Metropolis-Hastings 算法中,接受概率公式为:
      α ( x , x ′ ) = min ⁡ ( 1 , p ( x ′ ) q ( x ′ , x ) p ( x ) q ( x , x ′ ) ) \alpha(x, x') = \min\left(1, \frac{p(x')q(x', x)}{p(x)q(x, x')}\right) α(x,x)=min(1,p(x)q(x,x)p(x)q(x,x))
    • 若使用满条件分布,可以简化为:
      α ( x , x ′ ) = min ⁡ ( 1 , p ( x I ′ ∣ x − I ′ ) p ( x I ∣ x − I ) ) \alpha(x, x') = \min\left(1, \frac{p(x_I' | x_{-I}')}{p(x_I | x_{-I})}\right) α(x,x)=min(1,p(xIxI)p(xIxI))
      从而减少计算复杂度。
  3. 示例应用

    • 在联合分布较复杂但条件分布易于解析的场景下(如多变量正态分布或多变量指数分布),满条件分布的引入显著提高了采样效率。

5. 总结

满条件分布是 Metropolis-Hastings 算法中的重要工具:

  • 定义:描述变量 x I x_I xI 在其余变量 x − I x_{-I} xI 给定条件下的分布;
  • 性质:满条件分布的比值等于联合分布的比值,简化了联合分布的计算;
  • 应用:通过满条件分布简化接受概率公式,优化 Metropolis-Hastings 算法的效率。

通过对条件分布和联合分布的关系进行巧妙利用,可以解决高维复杂分布的采样问题,提高采样速度和准确性。

Vivado2023是一款集成开发环境软件,用于设计和验证FPGA(现场可编程门阵列)和可编程逻辑器件。对于使用Vivado2023的用户来说,license是必不可少的。 Vivado2023的license是一种许可证,用于授权用户合法使用该软件。许可证分为多种类型,包括评估许可证、开发许可证和节点许可证等。每种许可证都有不同的使用条件和功能。 评估许可证是免费提供的,让用户可以在一段时间内试用Vivado2023的全部功能。用户可以使用这个许可证来了解软件的性能和特点,对于初学者和小规模项目来说是一个很好的选择。但是,使用评估许可证的用户在使用期限过后需要购买正式的许可证才能继续使用软件。 开发许可证是付费的,可以永久使用Vivado2023的全部功能。这种许可证适用于需要长期使用Vivado2023进行开发的用户,通常是专业的FPGA设计师或工程师。购买开发许可证可以享受Vivado2023的技术支持和更新服务,确保软件始终保持最新的版本和功能。 节点许可证是用于多设备或分布式设计的许可证,可以在多个计算机上安装Vivado2023,并共享使用。节点许可证适用于大规模项目或需要多个处理节点进行设计的用户,可以提高工作效率和资源利用率。 总之,Vivado2023 license是用户在使用Vivado2023时必须考虑的问题。用户可以根据自己的需求选择合适的许可证类型,以便获取最佳的软件使用体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值