【PyTorch】torch.nn.functional.log_softmax() 函数:计算 log(softmax),用于多分类任务

torch.nn.functional.log_softmax

torch.nn.functional.log_softmaxPyTorch 提供的用于计算 log(softmax) 的函数,通常用于 多分类任务计算交叉熵损失,可以提高数值稳定性并防止数值溢出。


1. log_softmax 的数学公式

对于 输入张量 X X X,softmax 计算如下:
softmax ( X i ) = e X i ∑ j e X j \text{softmax}(X_i) = \frac{e^{X_i}}{\sum_{j} e^{X_j}} softmax(Xi)=jeXjeXi
然后取对数:
log ⁡ softmax ( X i ) = X i − log ⁡ ∑ j e X j \log \text{softmax}(X_i) = X_i - \log \sum_{j} e^{X_j} logsoftmax(Xi)=XilogjeXj

为什么使用 log_softmax 而不是 softmax + log

  1. 防止数值溢出
    • softmax(X) 可能会导致指数运算 溢出(特别是 X 取值较大时)。
    • log_softmax(X) 计算时,先 进行数值归一化,不会导致溢出。
  2. 更高效
    • log_softmax 计算速度更快,因为它可以与 nll_loss 直接配合使用。

2. torch.nn.functional.log_softmax 语法

torch.nn.functional.log_softmax(input, dim)
参数说明
input输入张量(通常是模型 logits 输出)
dim计算 softmax 的维度(通常 dim=1,沿类别维度计算)

3. 示例:计算 log_softmax

import torch
import torch.nn.functional as F

# 假设 batch_size=2,类别数=3
logits = torch.tensor([[2.0, 1.0, 0.1], [0.5, 2.0, 1.5]])

# 计算 log_softmax(dim=1 表示沿类别维度)
log_probs = F.log_softmax(logits, dim=1)

print(log_probs)

输出

tensor([[-0.4170, -1.4170, -2.3170],
        [-2.0076, -0.5076, -1.0076]])

解析

  • logits 未归一化,直接输入。
  • log_softmax(logits, dim=1) 对每一行计算 log(softmax)
  • 数值稳定性更高,避免 softmax 溢出问题

4. log_softmaxsoftmax + log 的区别

logits = torch.tensor([[2.0, 1.0, 0.1]])

# 方式 1:直接使用 log_softmax
log_probs1 = F.log_softmax(logits, dim=1)

# 方式 2:先 softmax 再 log
softmax_probs = torch.softmax(logits, dim=1)
log_probs2 = torch.log(softmax_probs)

print(log_probs1)
print(log_probs2)

两者输出相同,但 log_softmax 更稳定!

tensor([[-0.4170, -1.4170, -2.3170]])
tensor([[-0.4170, -1.4170, -2.3170]])
  • F.log_softmax torch.softmax + torch.log 更稳定,计算更高效

5. log_softmax 在交叉熵损失中的作用

PyTorch F.cross_entropy 内部已经包含 log_softmax

import torch.nn.functional as F

# 假设 batch_size=2,类别数=3
logits = torch.tensor([[2.0, 1.0, 0.1], [0.5, 2.0, 1.5]])
targets = torch.tensor([0, 2])  # 真实类别索引

# 交叉熵损失(内部自动使用 log_softmax)
loss = F.cross_entropy(logits, targets)
print(loss)

解析

  • F.cross_entropy(logits, targets) 内部使用 log_softmax + nll_loss
  • 直接传入 logits,无需手动计算 softmax

6. log_softmaxnll_loss

如果已经计算了 log_softmax,可以直接使用 nll_loss

log_probs = F.log_softmax(logits, dim=1)

# 使用 nll_loss 计算损失
loss = F.nll_loss(log_probs, targets)

print(loss)

nll_loss 只计算 log_softmax 结果与目标的匹配度,与 F.cross_entropy 结果相同。


7. 适用场景

  • 分类任务(如 CNN, NLP)
    • F.cross_entropy 内部已使用 log_softmax,无需手动计算。
  • 强化学习(RL)
    • 计算 策略梯度损失 时,经常需要 log_softmax
  • 变分自编码器(VAE)
    • 计算 ELBO 损失 需要 log_softmax

8. 结论

  • torch.nn.functional.log_softmax 用于计算 log(softmax),提高数值稳定性
  • softmax + log 更稳定,更高效
  • 分类任务 中,cross_entropy 已包含 log_softmax,无需额外计算
  • 在强化学习、VAE 等任务中,log_softmax 也是常用的概率计算方法
### 回答1: torch.nn.functional.log_softmaxPyTorch中的一个函数用于计算softmax函数的对数值。softmax函数是一种常用的激活函数用于将输入值转换为概率分布。log_softmax函数则是对softmax函数的结果取对数,可以避免数值溢出的问题,并且在计算交叉熵损失时更加方便。 ### 回答2: torch.nn.functional.log_softmaxPyTorch中的一个函数用于计算数据在经过softmax之后进行log的结果。在深度学习中,softmax是非常常见的一种激活函数,使用softmax可以将数据的输出转换为概率分布,可以用于解决分类问题。而log_softmax就是在softmax的基础上再进行一次log变换,这样做的好处在于可以在计算损失函数时,避免溢出的问题。 函数定义: torch.nn.functional.log_softmax(input, dim=None, _stacklevel=3, dtype=None) 参数介绍: input: 输入的数据tensor dim: 沿着哪个维度进行softmax操作,默认为-1,即最后一个维度 dtype: 输出的数据类型,默认为None,即自动判断 函数返回值: log_softmax操作后的输出tensor 使用示例: 假设有一个大小为(B, C, H, W)的tensor。 如果要对tensor在最后一个维度上进行softmax操作: output = nn.functional.log_softmax(tensor, dim=-1) 如果要对tensor在第二个维度上进行softmax操作: output = nn.functional.log_softmax(tensor, dim=1) 需要注意的是:在PyTorch中,nn.functional.log_softmax并没有可训练的参数,因此只是一个操作函数,而不是层。 ### 回答3: 在PyTorch中,torch.nn.functional.log_softmax()函数被用来实现对数softmax函数softmax函数是一种常用的激活函数,它可以把一个向量变成每个元素都在0到1之间且和为1的概率分布。在分类问题中,我们经常把输出的向量通过softmax转化成一个概率分布,然后找到概率最大的类别作为预测结果。 而对数softmax函数就是对softmax函数取对数,可以减小计算上溢和下溢的风险,因为对数函数可以处理非常小和非常大的数,同时还可以保持概率的相对大小不变。因此,log_softmax函数通常被用在神经网络的输出层作为损失函数log_softmax函数的数学公式为: log_softmax(x_i) = log(exp(x_i) / sum_j(exp(x_j))) 其中,x是输入的向量,i是向量的某一个元素,j是向量的所有元素。 当我们在计算log_softmax时,需要先对输入向量x进行指数运算(exp(x)),然后将结果除以所有元素的指数和(sum_j(exp(x_j))),最后取对数。这个计算过程可以通过调用函数torch.nn.functional.log_softmax()来完成。具体说来,函数的作用是对输入进行logsoftmax计算并且返回结果。 函数的参数有两个,第一个是输入的向量x,第二个是在哪一个维度上进行logsoftmax计算。因为log_softmax函数是在维度上进行计算,因此需要指定哪个维度。一般情况下,我们选择最后一个维度,即dim=-1,这意味着对最后一个维度进行log_softmax计算。 总之,torch.nn.functional.log_softmax()是一种常用的神经网络函数用于实现对数softmax函数。它可以减小计算上溢和下溢的风险,同时还可以保持概率的相对大小不变。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值