【scikit-learn】sklearn.ensemble.RandomForestRegressor 类:随机森林回归器

sklearn.ensemble.RandomForestRegressor(随机森林回归器)

RandomForestRegressorsklearn.ensemble 提供的 随机森林(Random Forest)回归模型,通过 集成多棵决策树 进行回归预测,提高模型稳定性,减少过拟合,适用于 非线性回归任务


1. RandomForestRegressor 作用

  • 用于回归任务(如 房价预测、股票趋势分析)。
  • 通过多个决策树组合,提高预测精度
  • 减少过拟合,适用于高维数据和非线性数据

2. RandomForestRegressor 代码示例

(1) 训练随机森林回归器

from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split

# 生成回归数据
X, y = make_regression(n_samples=100, n_features=1, noise=10, random_state=42)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练随机森林回归模型
model = RandomForestRegressor(n_estimators=100, max_depth=3, random_state=42)
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 计算 R²
r2 = model.score(X_test, y_test)
print("随机森林回归器 R²:", r2)

解释

  • n_estimators=100:使用 100 棵决策树,提高稳定性。
  • max_depth=3:限制树的深度,防止过拟合。
  • random_state=42:保证结果可复现。

3. RandomForestRegressor 主要参数

RandomForestRegressor(n_estimators=100, criterion="squared_error", max_depth=None, min_samples_split=2, min_samples_leaf=1, bootstrap=True, random_state=None)
参数说明
n_estimators决策树数量(默认 100,值越大,模型越稳定但训练时间增加)
criterion“squared_error”(默认) or “absolute_error”(均方误差/绝对误差)
max_depth每棵树的最大深度(默认 None,自动生长)
min_samples_split分裂内部节点的最小样本数(默认 2
min_samples_leaf叶子节点的最小样本数(默认 1
bootstrap是否使用自助采样(默认 True
random_state设置随机种子,保证结果可复现

4. 获取特征重要性

import numpy as np

feature_importances = model.feature_importances_
print("特征重要性:", feature_importances)

解释

  • feature_importances_ 返回每个特征的重要性(数值越大,该特征越关键)。

5. 计算模型性能

from sklearn.metrics import mean_squared_error, r2_score

mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print("均方误差 MSE:", mse)
print("决定系数 R²:", r2)

解释

  • MSE(均方误差):值越小,拟合效果越好。
  • R²(决定系数)1 表示完美拟合,0 表示无解释能力。

6. RandomForestRegressor vs. DecisionTreeRegressor

模型适用情况主要区别
DecisionTreeRegressor单棵决策树回归易过拟合,适合小数据
RandomForestRegressor多个决策树投票减少过拟合,提高泛化能力

示例

from sklearn.tree import DecisionTreeRegressor

tree_model = DecisionTreeRegressor(max_depth=3, random_state=42)
tree_model.fit(X_train, y_train)

print("决策树回归器 R²:", tree_model.score(X_test, y_test))
print("随机森林回归器 R²:", model.score(X_test, y_test))

解释

  • 随机森林比单棵决策树泛化能力更强

7. n_estimators 对模型的影响

import numpy as np

estimators = [10, 50, 100, 200]
for n in estimators:
    model = RandomForestRegressor(n_estimators=n, max_depth=3, random_state=42)
    model.fit(X_train, y_train)
    print(f"n_estimators={n}, 测试集 R²={model.score(X_test, y_test)}")

解释

  • 较小的 n_estimators(如 10)不够稳定
  • 较大的 n_estimators(如 200)更稳定,但计算时间变长

8. 适用场景

  • 回归任务(如 房价预测、能源消耗预测)。
  • 数据具有非线性关系,线性模型无法有效拟合。
  • 需要可解释性强的模型(特征重要性分析)。

9. 结论

  • RandomForestRegressor 适用于回归任务,基于多个决策树投票,提高预测准确率,比 单棵决策树泛化能力更强,适用于 非线性数据和高维数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值