【scikit-learn】sklearn.ensemble.GradientBoostingRegressor 类:梯度提升回归器

sklearn.ensemble.GradientBoostingRegressor(梯度提升回归器)

GradientBoostingRegressorsklearn.ensemble 提供的 梯度提升树(GBDT,Gradient Boosting Decision Tree) 回归模型,通过 逐步优化每棵决策树,使其学习前一棵树的误差,提高回归预测能力,适用于 非线性回归任务


1. GradientBoostingRegressor 作用

  • 用于回归任务(如 房价预测、股票趋势分析)。
  • 通过序列化训练多个决策树,每棵树学习前一棵树的误差,提升模型表现。
  • 适用于中等规模数据,泛化能力强,但训练时间比随机森林长

2. GradientBoostingRegressor 代码示例

(1) 训练梯度提升回归器

from sklearn.ensemble import GradientBoostingRegressor
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split

# 生成回归数据
X, y = make_regression(n_samples=100, n_features=1, noise=10, random_state=42)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练梯度提升回归模型
model = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42)
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 计算 R²
r2 = model.score(X_test, y_test)
print("梯度提升回归器 R²:", r2)

解释

  • n_estimators=100:使用 100 棵决策树,每棵树逐步优化前一棵树的误差。
  • learning_rate=0.1:学习率,控制每棵树对最终预测的贡献(降低 learning_rate 需增加 n_estimators)。
  • max_depth=3:限制树的深度,防止过拟合。

3. GradientBoostingRegressor 主要参数

GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=3, subsample=1.0, criterion="squared_error", random_state=None)
参数说明
n_estimators决策树数量(默认 100,值越大,模型越强但训练时间变长)
learning_rate学习率(默认 0.1,较小的值提高泛化能力,但需要更多树)
max_depth每棵树的最大深度(默认 3,值过大易过拟合)
subsample每轮训练使用的样本比例(默认 1.0,可设为 0.8 提高泛化能力)
criterion损失函数(默认 "squared_error",衡量分裂质量)
random_state设置随机种子,保证结果可复现

4. 获取特征重要性

import numpy as np

feature_importances = model.feature_importances_
print("特征重要性:", feature_importances)

解释

  • feature_importances_ 返回每个特征的重要性(值越大,该特征越关键)。

5. 计算模型性能

from sklearn.metrics import mean_squared_error, r2_score

mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print("均方误差 MSE:", mse)
print("决定系数 R²:", r2)

解释

  • MSE(均方误差):值越小,拟合效果越好。
  • R²(决定系数)1 表示完美拟合,0 表示无解释能力。

6. GradientBoostingRegressor vs. RandomForestRegressor

模型适用情况主要区别
RandomForestRegressor多个决策树并行训练降低过拟合,训练速度快
GradientBoostingRegressor逐步优化误差,提高回归精度训练速度较慢,但效果更强

示例

from sklearn.ensemble import RandomForestRegressor

rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)

print("随机森林回归器 R²:", rf.score(X_test, y_test))
print("梯度提升回归器 R²:", model.score(X_test, y_test))

解释

  • GBDT 适用于中等规模数据RandomForest 训练速度更快。

7. learning_rate 对模型的影响

import numpy as np

learning_rates = [0.01, 0.1, 0.2, 0.5]
for lr in learning_rates:
    model = GradientBoostingRegressor(n_estimators=100, learning_rate=lr, max_depth=3, random_state=42)
    model.fit(X_train, y_train)
    print(f"学习率={lr}, 测试集 R²={model.score(X_test, y_test)}")

解释

  • 较小的 learning_rate(如 0.01)需要更多树(n_estimators)来达到相同效果
  • 较大的 learning_rate(如 0.5)可能导致过拟合

8. 适用场景

  • 回归任务(如 房价预测、股票趋势预测)。
  • 数据量适中(几千到几十万样本),避免过长训练时间。
  • RandomForestRegressor 不足时,GBDT 可能更优

9. 结论

  • GradientBoostingRegressor 适用于回归任务,逐步优化误差,提高回归预测能力,比随机森林训练 更慢但效果更强,可以 调整 learning_raten_estimators 控制模型复杂度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值