【LangChain】langchain_chroma 中的 Chroma 常用方法 列举 和 解释说明

langchain_chroma.Chroma 是 LangChain 提供的向量存储类,与 Chroma 数据库交互,用于存储嵌入向量并进行高效相似性搜索,广泛应用于检索增强生成(RAG)系统。

本文基于 LangChain 0.3.x,详细介绍 langchain_chroma.Chroma 的核心方法、功能及其在 RAG 系统中的典型应用,并提供一个独立示例,展示如何使用这些方法构建 RAG 系统。示例包含 PDF 加载(langchain_community.document_loaders.PyPDFLoader)、分割、嵌入生成和查询。


langchain_chroma.Chroma 简介

langchain_chroma.Chroma 是 LangChain 的 Chroma 向量存储包装器,连接 Chroma 数据库(一个开源的轻量级向量数据库),支持存储嵌入向量和元数据,执行高效的向量搜索(如余弦相似度)。它继承自 LangChain 的 VectorStore 基类,提供标准化的向量存储接口,适合本地开发和中小规模 RAG 系统。

核心功能

  • 存储文档的嵌入向量(由嵌入模型如 OpenAIEmbeddings 生成)。
  • 支持快速相似性搜索,返回与查询最相关的文档。
  • 提供 LangChain 检索器接口,集成 RAG 管道。
  • 支持持久化存储(保存到磁盘)或内存模式。

初始化参数

  • embedding_function(必填):嵌入模型(如 OpenAIEmbeddings)。
  • collection_name(默认 "langchain"):集合名称。
  • persist_directory(可选):持久化存储路径。
  • client(可选):自定义 Chroma 客户端。
  • collection_metadata(可选):集合元数据(如 {"hnsw:space": "cosine"})。

适用场景

  • 本地 RAG 系统,处理文档、PDF 等。
  • 快速原型设计或测试。
  • 需要轻量级向量存储的应用。

Chroma 常用方法

以下是 langchain_chroma.Chroma 类的常用方法,基于源码(langchain_chroma/vectorstores.py)和官方文档(Chroma Vector Store)。我将列出方法签名、参数、返回值、功能描述及使用场景。

1. add_documents(documents: List[Document], **kwargs) -> List[str]
  • 功能:将文档列表添加到 Chroma 集合,生成嵌入向量并存储。
  • 参数
    • documentsList[Document],包含 page_contentmetadata 的文档列表。
    • **kwargs:附加参数,如 ids(自定义文档 ID)。
  • 返回值List[str],插入文档的 ID 列表。
  • 使用场景
    • 初始化向量存储,批量导入文档。
    • 更新集合,添加新文档。
  • 示例
    from langchain_core.documents import Document
    documents = [Document(page_content="示例文本", metadata={"source": "test"})]
    vectorstore.add_documents(documents)
    
2. add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs) -> List[str]
  • 功能:将文本列表添加到 Chroma 集合,生成嵌入并存储。
  • 参数
    • texts:文本字符串迭代器。
    • metadatas:可选的元数据列表,与文本对应。
    • **kwargs:附加参数,如 ids
  • 返回值List[str],插入文本的 ID 列表。
  • 使用场景
    • 直接添加原始文本(无 Document 对象)。
    • 适合轻量级数据导入。
  • 示例
    texts = ["物联网是连接物理设备的技术"]
    metadatas = [{"source": "iot"}]
    vectorstore.add_texts(texts, metadatas)
    
3. as_retriever(**kwargs) -> VectorStoreRetriever
  • 功能:将 Chroma 向量存储转换为 LangChain 检索器,用于 RAG 管道。
  • 参数
    • search_type(默认 "similarity"):搜索类型("similarity", "mmr", "similarity_score_threshold")。
    • search_kwargs:搜索参数,如 k(返回文档数)、filter(元数据过滤)、score_threshold(得分阈值)。
  • 返回值VectorStoreRetriever,可用于检索相关文档。
  • 使用场景
    • 在 RAG 系统中检索与查询最相关的文档。
    • 支持元数据过滤(如 filter={"source": "iot"})。
  • 示例
    retriever = vectorstore.as_retriever(search_kwargs={"k": 2, "filter": {"source": "iot"}})
    docs = retriever.invoke("什么是物联网?")
    
4. similarity_search(query: str, k: int = 4, **kwargs) -> List[Document]
  • 功能:根据查询文本执行相似性搜索,返回最相关的文档。
  • 参数
    • query:查询字符串。
    • k:返回文档数量。
    • **kwargs:附加参数,如 filter(元数据过滤)。
  • 返回值List[Document],包含匹配的文档。
  • 使用场景
    • 手动测试向量搜索效果。
    • 调试或小规模检索。
  • 示例
    docs = vectorstore.similarity_search("什么是物联网?", k=2, filter={"source": "iot"})
    for doc in docs:
        print(doc.page_content)
    
5. similarity_search_with_score(query: str, k: int = 4, **kwargs) -> List[Tuple[Document, float]]
  • 功能:执行相似性搜索,返回文档及其相似度得分。
  • 参数
    • query:查询字符串。
    • k:返回文档数量。
    • **kwargs:如 filter
  • 返回值List[Tuple[Document, float]],文档和得分(取决于距离 metric,如余弦距离)。
  • 使用场景
    • 评估搜索结果的置信度。
    • 调试或优化检索阈值。
  • 示例
    results = vectorstore.similarity_search_with_score("什么是物联网?", k=2)
    for doc, score in results:
        print(f"Content: {doc.page_content}, Score: {score}")
    
6. delete_collection() -> None
  • 功能:删除当前 Chroma 集合。
  • 参数:无。
  • 返回值:无。
  • 使用场景
    • 清理旧数据或重置集合。
    • 测试时删除临时集合。
  • 示例
    vectorstore.delete_collection()
    
7. persist() -> None
  • 功能:将 Chroma 集合持久化到磁盘(需指定 persist_directory)。
  • 参数:无。
  • 返回值:无。
  • 使用场景
    • 保存向量存储以供后续加载。
    • 确保数据在程序重启后保留。
  • 示例
    vectorstore = Chroma(..., persist_directory="./chroma_db")
    vectorstore.persist()  # 最新版已不再支持,会自动进行持久化
    
8. from_documents(cls, documents: List[Document], embedding: Embeddings, **kwargs) -> Chroma
  • 功能:类方法,从文档列表创建 Chroma 向量存储实例并添加文档。
  • 参数
    • documentsList[Document],文档列表。
    • embedding:嵌入模型。
    • **kwargs:如 collection_namepersist_directory
  • 返回值Chroma 实例。
  • 使用场景
    • 一次性创建并填充向量存储。
    • 简化初始化流程。
  • 示例
    from langchain_openai import OpenAIEmbeddings
    vectorstore = Chroma.from_documents(documents, OpenAIEmbeddings(), collection_name="test")
    
9. from_texts(cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs) -> Chroma
  • 功能:类方法,从文本列表创建 Chroma 向量存储并添加文本。
  • 参数
    • texts:文本列表。
    • embedding:嵌入模型。
    • metadatas:可选的元数据列表。
    • **kwargs:如 collection_name
  • 返回值Chroma 实例。
  • 使用场景
    • 快速导入原始文本。
    • 测试或小规模数据处理。
  • 示例
    vectorstore = Chroma.from_texts(["测试文本"], OpenAIEmbeddings(), collection_name="test")
    
其他辅助方法
  • max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, **kwargs) -> List[Document]
    • 使用最大边际相关性(MMR)搜索,优化结果多样性。
    • 场景:避免检索过于相似的文档。
  • similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs) -> List[Document]
    • 直接使用嵌入向量搜索(不需查询文本)。
    • 场景:已有嵌入向量时直接检索。

方法使用场景总结

方法主要用途典型场景
add_documents批量添加文档初始化 RAG 知识库
add_texts添加原始文本轻量级数据导入
as_retriever转换为 RAG 检索器构建 RAG 管道
similarity_search手动相似性搜索测试检索效果
similarity_search_with_score带得分搜索评估检索质量
delete_collection删除集合清理或重置数据
persist持久化存储保存数据库
from_documents创建并填充存储快速初始化
from_texts从文本创建存储小规模测试

推荐方法

  • as_retriever:RAG 系统中用于检索。
  • add_documents / from_documents:初始化或更新知识库。
  • similarity_search:调试和验证。

使用 Chroma 常用方法的 RAG 示例

以下示例展示如何使用 langchain_chroma.Chroma 的常用方法(from_documents, as_retriever, similarity_search, persist),构建一个 RAG 系统,加载 PDF 文档(关于大数据分析主题),回答查询。

准备文件
创建一个 PDF 文件 data_analytics_knowledge.pdf,内容如下(可使用 Word 保存为 PDF):

大数据分析是从大规模数据集中提取有价值信息的过程。
数据挖掘是大数据分析的核心技术,用于发现模式和关联。
预测分析利用历史数据预测未来趋势。

代码

import os
os.environ["OPENAI_API_KEY"] = "Your OpenAI API Key"

from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_chroma import Chroma
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader

# 加载 PDF 文档
loader = PyPDFLoader(file_path="data_analytics_knowledge.pdf")
documents = loader.load()

# 分割文档
splitter = RecursiveCharacterTextSplitter(
    chunk_size=100,
    chunk_overlap=20,
    separators=["\n\n", "\n", " ", ""]
)
split_documents = splitter.split_documents(documents)

# 使用 from_documents 创建 Chroma 向量存储
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vectorstore = Chroma.from_documents(
    documents=split_documents,
    embedding=embeddings,
    collection_name="analytics_collection",
    persist_directory="./chroma_db"
)

# 测试 similarity_search
print("测试 similarity_search:")
results = vectorstore.similarity_search("什么是大数据分析?", k=2)
for doc in results:
    print(f"Content: {doc.page_content}")

# 初始化 LLM
llm = ChatOpenAI(temperature=0, model="gpt-4")

# 提示模板
prompt = ChatPromptTemplate.from_template(
    """根据以下上下文回答问题:
上下文:{context}
问题:{question}
回答:"""
)

# 格式化文档函数
def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

# 使用 as_retriever 创建 RAG 链
rag_chain = (
    {
        "context": vectorstore.as_retriever(search_kwargs={"k": 2}) | format_docs,
        "question": RunnablePassthrough()
    }
    | prompt
    | llm
    | StrOutputParser()
)

# 调用链
print("\nRAG 链输出:")
response = rag_chain.invoke("什么是大数据分析?")
print(response)
response = rag_chain.invoke("它包含哪些技术?")
print(response)

输出示例

测试 similarity_search:
Content: 大数据分析是从大规模数据集中提取有价值信息的过程。
Content: 数据挖掘是大数据分析的核心技术,用于发现模式和关联。

RAG 链输出:
大数据分析是从大规模数据集中提取有价值信息的过程。
大数据分析包含技术,如数据挖掘和预测分析。
代码说明
  1. 文档加载与分割
    • PyPDFLoader 加载 data_analytics_knowledge.pdf
    • RecursiveCharacterTextSplitter 分割为 100 字符块,chunk_overlap=20
  2. 向量存储
    • Chroma.from_documents 创建并填充 analytics_collection,自动持久化到 ./chroma_db
  3. 方法使用
    • similarity_search:手动测试检索效果。
    • as_retriever:集成到 RAG 链,检索相关文档。
    • persist:保存数据库到磁盘。
  4. RAG 链
    • retriever 返回 2 个最相关文档。
    • promptllmgpt-4)生成答案。

运行要求

  • data_analytics_knowledge.pdf 存在且可读。
  • OpenAI API 密钥有效。
  • 磁盘有写权限(用于 persist_directory)。

注意事项

  1. API 密钥
    • 使用 .env 文件:
      from dotenv import load_dotenv
      load_dotenv()
      
    • 确保密钥支持 text-embedding-3-smallgpt-4
  2. 依赖
    • 安装:
      pip install --upgrade langchain langchain-chroma langchain-openai chromadb pypdf
      
  3. Chroma 配置
    • 验证持久化:
      ls ./chroma_db  # 检查数据库文件
      
    • 清除旧集合:
      vectorstore.delete_collection()
      
  4. 性能优化
    • 调整 chunk_size(500-1000)、search_kwargs={"k": 3}
    • 添加元数据过滤:
      vectorstore.as_retriever(search_kwargs={"k": 2, "filter": {"source": "data_analytics_knowledge.pdf"}})
      
  5. 错误调试
    • 检查 Chroma 数据库:print(vectorstore._collection.count()) 查看文档数量。
    • 设置 langchain.debug = True 查看 LCEL 链日志。

常见问题

Q1:as_retrieversimilarity_search 的区别?
A:as_retriever 返回可集成到 RAG 链的检索器,适合管道;similarity_search 是手动查询方法,适合调试。

Q2:如何过滤元数据?
A:使用 filter 参数,如 vectorstore.as_retriever(search_kwargs={"filter": {"source": "iot"}})

Q3:如何加载已有 Chroma 数据库?
A:指定相同的 persist_directory

vectorstore = Chroma(..., persist_directory="./chroma_db")

Q4:支持哪些搜索类型?
A:支持 "similarity", "mmr", "similarity_score_threshold",通过 as_retriever(search_type=...) 设置。


总结

langchain_chroma.Chroma 的常用方法包括:

  • 添加数据add_documents, add_texts, from_documents, from_texts
  • 检索as_retriever, similarity_search, similarity_search_with_score
  • 管理delete_collection, persist.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值