读书笔记:自动控制原理

模型描述

常用的模型分为:

  • 时域模型:微分方程、差分方程和状态方程;
  • 频域模型:频率特性。
  • 复域模型:传递函数和结构图。

在控制工程中,不仅二阶系统的典型应用极为普遍,而且不少高阶系统的特性在一定条件下可用二阶系统的特征来表征。

Fourier变换与Laplace变换:LT适合解决微分方程的初值问题,而傅FT则适合解决不带初始条件的微分方程。FT可视为LT的轻量版本,具体可参见 傅里叶变换和拉普拉斯变换

线性系统的古典控制理论

时域分析法

线性系统的稳定性

在分析线性系统的稳定性时,系统的运动稳定性得到关注,即系统方程在不受任何外界输入的作用下,系统方程的解在时间 t t t 趋于无穷时的渐近行为。

严格来讲,平衡状态稳定性不等同于运动稳定性,但可以证明在线性系统中,两者是等价的。

根据李雅普诺夫稳定性理论,有若线性控制系统在初始扰动的影响下,其动态过程随时间的退役逐渐衰减并趋于零(原平衡工作点),则称系统渐近稳定;反之,若在初始扰动影响下,系统的动态过程随时间的推移而发散,则称系统不稳定。

该定义表明:线性系统的稳定性仅取决于系统自身的固有属性,而与外界条件无关。

线性系统的稳态误差计算

控制系统的稳态误差,是系统控制精度的一种度量。

对于一个实际的控制系统,由于系统结构、输入作用的类型(控制量或扰动量)、输入函数形式(跃阶、斜坡或加速度)的不同,控制系统的稳态输出不可能在任何情况下都与输出量一致或相当,也不可能在任何形式的扰动作用下都能准确地恢复到原平衡位置。此外,控制系统中不可避免地存在摩擦、间隙、不灵敏区、零位输出等非线性因素,这些都会造成附加的稳态误差。简言之,控制系统的稳态误差是不可避免的。控制系统设计的任务之一,是尽量减小系统的稳态误差,或者使稳态误差小于某一容许值。

只有当系统稳定时,研究稳态误差才有意义;对于不稳定的系统而言,不存在研究稳态误差的可能性。

根轨迹法

根轨迹(根迹)是开环系统某一参数从零变到无穷时,闭环系统特征方程式的根在 s s s平面上变化的轨迹。

基本法则

根轨迹的起点和终点。根轨迹起于开环极点,终于开环零点。

根轨迹的分支数、对称性和连续性。根轨迹的分支数与开环有限零点数 m m m和有限极点数 n n n中的大者相等,即分支数 = min ⁡ { m , n } = \min\{m, n\} =min{m,n}。它们是连续的并且对称于实轴。

根轨迹的渐近线。当开环有限极点数 n n n大于有限零点数 m m m时,有 n − m n-m nm条根轨迹分支沿着与实轴交角为 φ a \varphi_{a} φa,交点为 σ a \sigma_{a} σa的一组渐近线趋于无穷远处,且有 φ a = ( 2 k + 1 ) π n − m ; k = 0 , 1 , 2 , ⋯   , n − m − 1 , \varphi_{a} = \frac{(2 k + 1) \pi}{n - m}; \quad k = 0, 1, 2, \cdots, n -m - 1, φa=nm(2k+1)π;k=0,1,2,,nm1, σ a = ∑ i = 1 n p i − ∑ j = 1 m z j n − m . \sigma_{a} = \frac{\sum_{i = 1}^{n} p_{i} - \sum_{j = 1}^{m} z_{j}}{n - m}. σa=nmi=1npij=1mzj.

根轨迹在实轴上的分布。实轴上的某一区域,若其右边开环实数零、极点个数之和为奇数,则该区域必是根轨迹。

根轨迹的分离点与分离角。根轨迹的分离点,即两条或两条以上根轨迹分支在 s s s平面上相遇又立即分开的点。分离点的坐标 d d d是下述方程的解: ∑ j = 1 m 1 d − z j = ∑ i = 1 n 1 d − p i . \sum_{j = 1}^{m} \frac{1}{d - z_{j}} = \sum_{i = 1}^{n} \frac{1}{d - p_{i}}. j=1mdzj1=i=1ndpi1.式中, z j z_{j} zj为各开环零点的数值; p i p_{i} pi为各开环极点的数值;分离角为 ( 2 k + 1 ) π / l (2 k + 1) \pi / l (2k+1)π/l

根轨迹的起始角与终止角。根轨迹离开开环复数极点处的切线与正实轴的夹角称为起始角 θ p i \theta_{p_{i}} θpi);根轨迹进入开环复数零点处的切线与正实轴的夹角称为终止角 φ z i \varphi_{z_{i}} φzi)。具体而言, θ p i = ( 2 k + 1 ) π + ( ∑ j = 1 m φ z j p i − ∑ j = 1 , j ≠ i n θ p i p j ) , k = 0 , ± 1 , ± 2 , ⋯ , φ z i = ( 2 k + 1 ) π − ( ∑ j = 1 , j ≠ i m φ z j z i − ∑ j = 1 n θ p j z i ) , k = 0 , ± 1 , ± 2 , ⋯   . \begin{align*} \theta_{p_{i}} & = (2 k + 1) \pi + \left(\sum_{j = 1}^{m} \varphi_{z_{j}p_{i}} - \sum_{j = 1, j \neq i}^{n} \theta_{p_{i} p_{j}} \right), \quad k = 0, \pm1, \pm 2, \cdots, \\ \varphi_{z_{i}} & = (2 k + 1) \pi - \left(\sum_{j = 1, j \neq i}^{m} \varphi_{z_{j} z_{i}} - \sum_{j = 1}^{n} \theta_{p_{j} z_{i}} \right), \quad k = 0, \pm1, \pm 2, \cdots. \end{align*} θpiφzi=(2k+1)π+ j=1mφzjpij=1,j=inθpipj ,k=0,±1,±2,=(2k+1)π j=1,j=imφzjzij=1nθpjzi ,k=0,±1,±2,.

根轨迹与虚轴的交点。若根轨迹与虚轴相交,则交点上的 K ∗ K^{\ast} K ω \omega ω值可用lRouth Criterion确定,也可令闭环特征方程中的 s = j ω s = j \omega s=,然后分别令其实部和虚部为零而求得。

根之和。系统的闭环特征方程在 n > m n > m n>m的一般情况下,可有不同形式的表示 ∏ i = 1 n ( s − p i ) + K ∗ ∏ j = 1 m ( s − z i ) = s n + a 1 s n − 1 + ⋯ + a n − 1 s + a n = ∏ i = 1 n ( s − s i ) = 0. \begin{align*} \prod_{i=1}^{n} (s-p_{i}) + K^{\ast} \prod_{j=1}^{m} (s-z_{i}) & = s^{n}+a_{1}s^{n-1}+\cdots+a_{n-1}s+a_{n} \\ & = \prod_{i=1}^{n} (s-s_{i}) = 0. \end{align*} i=1n(spi)+Kj=1m(szi)=sn+a1sn1++an1s+an=i=1n(ssi)=0. n − m ≥ 2 n-m\geq 2 nm2时, ∑ i = 1 n s i = ∑ i = 1 n p i . \sum_{i=1}^{n} s_{i} = \sum_{i=1}^{n} p_{i}. i=1nsi=i=1npi.在开环极点确定的情况下,这是一个常数,即当开环增益增大时,若闭环的某些根在 s s s平面上向左移动,则另一部分根必向右移动。

以上是理论部分,在实践中,rlocus和rlocfind命令可协助快速获得根轨迹图。

频域分析法

控制系统中的信号可以表示为不同频率正弦信号的合成,控制系统的频率特性反映正弦信号作用下系统响应的性能。应用频率特性研究系统的经典方法叫做频域分析法。它具有以下特点:

  1. 系统分析和控制器设计可用图解法;
  2. 频率特性物理意义明确。对于一阶/二阶系统,时频域指标有确定的对应关系;对于高阶系统,可建立近似的对应关系;
  3. 控制系统的频域设计可以兼顾动态响应和噪声抑制两方面的要求;
  4. 该方法不仅适用于线性定常系统,还可推广于某些非线性系统。

线性离散系统

把系统中的离散信号是脉冲序列形式的离散系统,称为采样/脉冲控制系统;把数字序列形式的离散系统,称为数字/计算机控制系统

采样/脉冲控制系统

采样控制系统可分为周期采样非周期采样控制系统。为了方便分析假设为同步等周期的采样过程。在实践中,雷达跟踪系统和(降低信息传输费用的)分时系统均为采样控制系统。

私以为,应为时分系统,类似通信中的TDD。

数字/计算机控制系统

just kidding, 数控机床

数字控制系统是一种以数字计算机为控制器去控制具有连续工作状态的被控对象的闭环控制系统。具体而言,包含工作于离散状态下的数字计算机和工作于连续状态下的被控对象两大部分。在军事、航空以及工业过程控制中得到广泛的应用。

离散控制系统的特点

  1. 由数字计算机构成的数字校正装置,效果比连续性校正装置好;且由软件实现的控制规律易于改变,控制灵活;(SDN?)
  2. 采样信号,特别是数字信号的传递,可以有效地抑制噪声,从而提高了系统的抗扰能力;
  3. 允许采用高灵敏度的控制元件以提高系统的控制精度;
  4. 用一台计算机分时控制若干个系统,提高了设备的利用率、经济性好;
  5. 对于具有传输延迟,特别是大延迟的控制系统,可以引入采样的方式稳定。

非线性系统

非线性系统与线性系统的本质区别:是否应用叠加原理?相较于线性系统,非线性系统具有:

  1. 稳定性分析复杂:非线性系统可能具有多个平衡状态,各平衡状态是否稳定是不确定的;初值条件不同,自由运动的稳定性不同。更重要的是,平衡状态的稳定性不仅与系统的结构和参数有关,而且与系统的初始条件有直接的关系。
  2. 可能存在自振激荡线性。
  3. 频率响应发生畸变。

相平面方法

该方法是推广应用时域分析法的一种图解分析方法,通过在相平面上绘制相轨迹线,确定非线性微分方程在不同初值下解的运动形式。仅适用于一阶和二阶系统

对于二阶系统来讲, x ( t ) x(t) x(t) x ˙ ( t ) \dot{x}(t) x˙(t)称为系统运动的相变量(状态变量);“ x ( t ) − x ˙ ( t ) x(t)-\dot{x}(t) x(t)x˙(t)”坐标系称为相平面;相变量从初值开始,随着时间 t t t的推移在相平面上运动形成的曲线称为相轨迹/轨线。在相轨迹上用箭头符号表示参变量时间 t t t的增加方向。

描述函数法

该方法是基于频域分析法和非线性特性谐波线性化的一种图解分析方法,适用于满足一定结构要求的一类非线性系统

该方法主要用于分析在无外作用的情况下,非线性系统的稳定性和自振荡稳态,且不受系统阶次的限制。但由于描述函数对系统结构、非线性环节的特性和线性部分的性能都有一定的要求,其本身也是一种近似的分析方法,因而有一定的应用限制。此外,该方法只能研究系统的频率响应特性,不能给出时间响应的确切信息。

逆系统法

该方法运用内环非线性反馈控制构成伪线性系统,基于此设计外环控制网络。该方法应用数学工具直接研究非线性控制问题,不必求解方程,是非线性系统控制研究的一个发展方法

基本思想

控制系统可视为对象在给定初始条件下输入到输出的一个变换,即 T : u → y , [ y ( 0 ) = y 0 , y ˙ ( 0 ) = y ˙ 0 , ⋯   , y ( n − 1 ) ( 0 ) = y ( n − 1 ) ( 0 ) , n 为系统阶次 ] . \mathcal{T}: u \to y, \quad [y(0) = y_{0}, \dot{y}(0) = \dot{y}_{0}, \cdots, y^{(n - 1)}(0) = y^{(n - 1)}(0), n\text{为系统阶次}]. T:uy,[y(0)=y0,y˙(0)=y˙0,,y(n1)(0)=y(n1)(0),n为系统阶次].若在满足初始条件的情况下,存在一个系统,即变换 T ^ : y → u \hat{\mathcal{T}}: y \to u T^:yu,则称该系统为原系统的逆系统

线性系统的现代控制理论

现代控制系统中的线性系统理论运用状态空间法描述“输入-状态-输出”诸变量间的因果关系。包括不限于线性系统的状态空间法、线性系统的几何理论线性系统的代数理论线性系统的多变量频域方法等。

线性空间的状态空间法

基本概念可参见状态空间分析法和状态结构图

可控性
如果系统所有状态变量的运动都可以由输入来影响和控制而由任何的初态到达原点,则称系统是完全可控的(状态完全可控/系统可控);否则,就称系统是不完全可控的/系统不可控。

可观察性
如果系统所有状态变量的任意形式的运动均可由输出完全反映,则称系统是状态可完全观测的(系统可观测);反之,则称系统是不完全可观测的/系统不可观测。

李雅普诺夫稳定性分析

  • 李雅普诺夫第一法(间接法)
    利用线性系统微分方程的解来判断系统的稳定性。
  • 李雅普诺夫第二法(直接法)
    首先利用经验和技巧来构造李雅普诺夫函数,进而利用该函数来判断系统的稳定性。

李雅普诺夫意义下的稳定

设一阶系统方程为 x ˙ = f ( x , t ) , \dot{\bm{x}} = \bm{f} (\bm{x}, t), x˙=f(x,t),其中, x \bm{x} x n n n维状态向量,且显含时间变量 t t t f ( x , t ) \bm{f} (\bm{x}, t) f(x,t)为线性或非线性、定常或时变的 n n n维向量函数,其展开式为 x ˙ i = f i ( x 1 , x 2 , ⋯   , x n , t ) ; i = 1 , 2 , ⋯   , n . \dot{x}_{i} = f_{i} (x_{1}, x_{2}, \cdots, x_{n}, t); \quad i = 1, 2, \cdots, n. x˙i=fi(x1,x2,,xn,t);i=1,2,,n.假定方程的解为 x ( t ; x 0 , t 0 ) \bm{x}(t;\bm{x}_{0},t_{0}) x(t;x0,t0),式中 x 0 \bm{x}_{0} x0 t 0 t_{0} t0分别为初始状态向量和初始时刻,则初始条件 x 0 \bm{x}_{0} x0必满足 x ( t ; x 0 , t 0 ) = x 0 \bm{x}(t;\bm{x}_{0},t_{0}) = \bm{x}_{0} x(t;x0,t0)=x0

  1. 平衡状态
    对于所有的 t t t,满足 x ˙ e = f ( x e , t ) = 0 \dot{\bm x}_{e} = \bm{f} ({\bm x}_{e}, t) = \bm{0} x˙e=f(xe,t)=0的状态 x e {\bm x}_{e} xe称为平衡状态。该状态的各分量相对于时间不再发生变化。

  2. 稳定性
    设系统初始状态位于以平衡状态 x e {\bm x}_{e} xe为球心、 δ \delta δ为半径的闭球域 S ( δ ) S(\delta) S(δ)内,即 ∥ x 0 − x e ∥ ≤ δ , t = t 0 . \|{\bm x}_{0} - {\bm x}_{e}\| \leq \delta, \quad t = t_{0}. x0xeδ,t=t0.若能使系统方程的解 x ( t ; x 0 , t 0 ) \bm{x}(t;\bm{x}_{0},t_{0}) x(t;x0,t0) t → ∞ t \to \infty t的过程中,都位于以 x e {\bm x}_{e} xe为球心、 ε \varepsilon ε为半径的闭球域 S ( ε ) S(\varepsilon) S(ε)内,即 ∥ x ( t ; x 0 , t 0 ) − x e ∥ ≤ ε , t > t 0 , \|\bm{x}(t;\bm{x}_{0},t_{0}) - {\bm x}_{e}\| \leq \varepsilon, \quad t > t_{0}, x(t;x0,t0)xeε,t>t0,则称系统的平衡状态 x e {\bm x}_{e} xe在李雅普诺夫意义下是稳定的

  3. 渐近稳定性

    李雅普诺夫意义下的稳定性与经典控制理论中的不同。实际上,经典控制论的稳定性等同于此处的渐近稳定性。

    若系统的平衡状态 x e {\bm x}_{e} xe不仅具有李雅普诺夫意义下的稳定性,且有 lim ⁡ t → ∞ ∥ x ( t ; x 0 , t 0 ) − x e ∥ ≤ ε , \lim_{t \to \infty} \|\bm{x}(t;\bm{x}_{0},t_{0}) - {\bm x}_{e}\| \leq \varepsilon, tlimx(t;x0,t0)xeε,则称此平衡状态是渐近稳定的。进一步,若 δ \delta δ t 0 t_{0} t0无关,且上式的极限过程与 t 0 t_{0} t0无关,则称此平衡状态是一致渐近稳定的
    稳定性的平面几何表示

  4. 全局渐近稳定性
    当初值条件扩展到整个状态空间,且平衡状态均具有渐近稳定性,称此平衡状态是大范围渐近稳定的。

    对于严格线性的系统,如果是渐近稳定的,则必是大范围渐近稳定的。
    对于非线性系统来讲,其稳定性往往与初始条件的大小密切相关,系统的渐近稳定不一定是大范围渐近稳定。

  5. 不稳定性
    如果对于某个实数 ε > 0 \varepsilon>0 ε>0和任一个实数 δ > 0 \delta>0 δ>0,无论这两个实数多么小,在 S ( δ ) S(\delta) S(δ)内总存在一个状态 x 0 \bm{x}_{0} x0使得由这一状态出发的轨迹超出 S ( ε ) S(\varepsilon) S(ε),则平衡状态 x e {\bm x}_{e} xe称为是不稳定的。

李雅普诺夫第一法(间接法)

对于线性定常系统 x ˙ = A x \dot{\bm{x}} = \bm{A} \bm{x} x˙=Ax x ( 0 ) = x 0 \bm{x}(0) = \bm{x}_{0} x(0)=x0 t ≥ 0 t \geq 0 t0,有
(1)系统的每一个平衡状态均在李雅普诺夫意义下稳定的充要条件是, A \bm{A} A的所有特征值均具有非正(负或零)实部,且具有零实部的特征值为 A \bm{A} A的最小多项式的单根,
(2)系统的唯一平衡状态 x e = 0 \bm{x}_{e} = \bm{0} xe=0是渐近稳定的充要条件是, A \bm{A} A的所有特征值均具有负实部。

李雅普诺夫第二法(直接法)

定常系统大范围渐近稳定判别定理1)对于定常系统 x ˙ = f ( x ) , t ≥ 0 , \dot{\bm{x}} = \bm{f} (\bm{x}), \quad t \geq 0, x˙=f(x),t0,其中 f ( 0 ) = 0 \bm{f} (\bm{0}) = \bm{0} f(0)=0,如果存在一个具有连续一阶导数的标量函数 V ( x ) V(\bm{x}) V(x) V ( 0 ) = 0 V(\bm{0}) = 0 V(0)=0,并且对于状态空间 X X X中的一切非零点 x \bm{x} x满足如下条件:
(1) V ( x ) V(\bm{x}) V(x)为正定;
(2) V ˙ ( x ) \dot{V}(\bm{x}) V˙(x)为负定;
(3)当 ∥ x ∥ → ∞ \|\bm{x}\| \to \infty x V ( x ) → ∞ V(\bm{x}) \to \infty V(x)
则系统的原点平衡状态是大范围渐近稳定的。

定常系统大范围渐近稳定判别定理2)对于定常系统 x ˙ = f ( x ) , t ≥ 0 , \dot{\bm{x}} = \bm{f} (\bm{x}), \quad t \geq 0, x˙=f(x),t0,其中 f ( 0 ) = 0 \bm{f} (\bm{0}) = \bm{0} f(0)=0,如果存在一个具有连续一阶导数的标量函数 V ( x ) V(\bm{x}) V(x) V ( 0 ) = 0 V(\bm{0}) = 0 V(0)=0,并且对于状态空间 X X X中的一切非零点 x \bm{x} x满足如下条件:
(1) V ( x ) V(\bm{x}) V(x)为正定;
(2) V ˙ ( x ) \dot{V}(\bm{x}) V˙(x)为半负定;
(3)对任意 x ∈ X \bm{x} \in X xX V ˙ ( x ( t ; x 0 , 0 ) ) ≠ 0 \dot{V}(\bm{x} (t; \bm{x}_{0}, 0)) \neq 0 V˙(x(t;x0,0))=0
(4)当 ∥ x ∥ → ∞ \|\bm{x}\| \to \infty x V ( x ) → ∞ V(\bm{x}) \to \infty V(x)
则系统的原点平衡状态是大范围渐近稳定的。

动态系统的最优控制方法

最优控制研究的主要问题是:根据已建立的被控对象的数学模型,选择一个容许的控制率,使得被控对象按预定要求运行,并使给定的某一性能指标达到极小值(极大值)。主要解决方法为现代变分理论,最常用的方法是动态规划和极小值原理。

  • 动态规划是由贝尔曼创立:根据最优性原理,发展出了变分学中的哈密顿-雅可比方程,解决了控制有闭集约束的变分问题;
  • 极小值原理由庞特里亚金创立:在力学哈密顿原理的启发下,推测并证明了极小值定理,解决了控制有闭集约束的变分问题。

最优控制问题可用泛函形式表示: min ⁡ u ( t ) ∈ Ω J = φ [ x ( t f ) , t f ] + ∫ t 0 t f L [ x ( t ) , u ( t ) , t ]   d t s . t . x ˙ ( t ) = f [ x ( t ) , u ( t ) , t ] ,   x ( t 0 ) = x 0 ,   ψ [ x ( t f ) , t f ] = 0 . \begin{align*} & \min_{\bm{u}(t) \in \Omega} J = \varphi \left[\bm{x}(t_{f}), t_{f}\right] + \int_{t_{0}}^{t_{f}} L \left[\bm{x}(t), \bm{u}(t), t\right] \,{\rm d}t \\ &{\rm s.t.} \quad \dot{\bm{x}}(t) = \bm{f} \left[\bm{x}(t), \bm{u}(t), t\right], \\ & \qquad \ \bm{x}(t_{0}) = \bm{x}_{0}, \\ & \qquad \ \bm{\psi}\left[\bm{x}(t_{f}), t_{f}\right] = \bm{0}. \end{align*} u(t)ΩminJ=φ[x(tf),tf]+t0tfL[x(t),u(t),t]dts.t.x˙(t)=f[x(t),u(t),t], x(t0)=x0, ψ[x(tf),tf]=0.具体讲,包含四方面内容:

  1. 系统数学模型
    x ˙ ( t ) = f [ x ( t ) , u ( t ) , t ] \dot{\bm{x}}(t) = \bm{f} \left[\bm{x}(t), \bm{u}(t), t\right] x˙(t)=f[x(t),u(t),t],且 x ∈ R n \bm{x} \in \mathbb{R}^{n} xRn u ∈ R m \bm{u} \in \mathbb{R}^{m} uRm f ∈ R n \bm{f} \in \mathbb{R}^{n} fRn
  2. 边界条件和目标集
    • 边界条件,即初态 x ( t 0 ) \bm{x}(t_{0}) x(t0)和末态 x ( t f ) \bm{x}(t_{f}) x(tf)
    • 目标集,即 ψ [ x ( t f ) , t f ] = 0 \bm{\psi}\left[\bm{x}(t_{f}), t_{f}\right] = \bm{0} ψ[x(tf),tf]=0。式中函数为 R r \mathbb{R}^{r} Rr上的连续可微向量函数,且 r ≤ n r \leq n rn
  3. 容许控制
    在属于闭集的控制中,控制向量 u ( t ) \bm{u}(t) u(t)的取值范围称为控制域,记为 Ω \Omega Ω。由于 u ( t ) \bm{u}(t) u(t) Ω \Omega Ω的边界上取值,因而被称为容许控制。
  4. 性能指标
    性能指标一般可归纳为 J = φ [ x ( t f ) , t f ] + ∫ t 0 t f L [ x ( t ) , u ( t ) , t ]   d t . J = \varphi \left[\bm{x}(t_{f}), t_{f}\right] + \int_{t_{0}}^{t_{f}} L \left[\bm{x}(t), \bm{u}(t), t\right] \,{\rm d}t. J=φ[x(tf),tf]+t0tfL[x(t),u(t),t]dt.
    • 第一项为末值项,表示在控制过程结束后,对系统末态的要求。
    • 第二项为过程项,表示在整个控制过程中,系统状态及控制应该满足的要求(如最小时间控制,最小燃耗控制以及最小能量控制)。

解析法

  • 控制无约束:经典微分法或变分法;
  • 控制有约束:极小值原理或动态规划;
    • 有二次型性能指标的线性系统:状态调节器

变分法

应用泛函一次变分为零,即泛函达到极值的必要条件,可得到下述结论。

无约束泛函极值的必要条件
考虑泛函极值问题 min ⁡ x ( t ) J [ x ] = ∫ t 0 t f L [ x , x ˙ , t ]   d t . \min_{\bm{x}(t)} J [\bm{x}]= \int_{t_{0}}^{t_{f}} L \left[\bm{x}, \dot{\bm{x}}, t\right] \,{\rm d}t. x(t)minJ[x]=t0tfL[x,x˙,t]dt.其中, L [ x , x ˙ , t ] L \left[\bm{x}, \dot{\bm{x}}, t\right] L[x,x˙,t] x ( t ) {\bm{x}(t)} x(t) [ t 0 , t f ] [t_{0}, t_{f}] [t0,tf]上连续可微, t 0 t_{0} t0 t f t_{f} tf给定。已知 x ( t 0 ) = x 0 \bm{x}(t_{0}) = \bm{x}_{0} x(t0)=x0 x ( t f ) = x f \bm{x}(t_{f}) = \bm{x}_{f} x(tf)=xf x ( t ) ∈ R n \bm{x}(t) \in \mathbb{R}^{n} x(t)Rn,则极值轨线符合如下欧拉方程 ∂ L ∂ x − d d t ∂ L ∂ x ˙ = 0 , \frac{\partial L}{\partial \bm{x}} - \frac{\rm d}{{\rm d} t} \frac{\partial L}{\partial \dot{\bm{x}}} = \bm{0}, xLdtdx˙L=0,及横截条件(transversal condition) ( ∂ L ∂ x ˙ ) T ∣ t f δ x ( t f ) − ( ∂ L ∂ x ˙ ) T ∣ t 0 δ x ( t 0 ) = 0. \left(\frac{\partial L}{\partial \dot{\bm{x}}}\right)^{\rm T} \Bigg|_{t_{f}} \bm{\delta} \bm{x}(t_{f}) - \left(\frac{\partial L}{\partial \dot{\bm{x}}}\right)^{\rm T}\Bigg|_{t_{0}} \bm{\delta} \bm{x}(t_{0}) = 0. (x˙L)T tfδx(tf)(x˙L)T t0δx(t0)=0.

在有约束的情况下使用拉格朗日乘子法使其转换为无约束问题。

有约束泛函极值的必要条件
考虑泛函极值问题 min ⁡ x ( t ) J [ x ] = ∫ t 0 t f g [ x , x ˙ , t ]   d t s . t . f [ x , x ˙ , t ] = 0 . \begin{align*} & \min_{\bm{x}(t)} J [\bm{x}]= \int_{t_{0}}^{t_{f}} g \left[\bm{x}, \dot{\bm{x}}, t\right] \,{\rm d}t \\ & {\rm s.t.} \quad \bm{f} \left[\bm{x}, \dot{\bm{x}}, t\right] = \bm{0}.\end{align*} x(t)minJ[x]=t0tfg[x,x˙,t]dts.t.f[x,x˙,t]=0.其中, f [ x , x ˙ , t ] = 0 \bm{f} \left[\bm{x}, \dot{\bm{x}}, t\right] = \bm{0} f[x,x˙,t]=0为系统运动微分方程; g [ x , x ˙ , t ] g \left[\bm{x}, \dot{\bm{x}}, t\right] g[x,x˙,t] x ( t ) {\bm{x}(t)} x(t) [ t 0 , t f ] [t_{0}, t_{f}] [t0,tf]上连续可微, x \bm{x} x x ˙ \dot{\bm{x}} x˙ f ( ) ˙ ∈ R n \bm{f} (\dot) \in \mathbb{R}^{n} f()˙Rn t 0 t_{0} t0 t f t_{f} tf给定。已知 x ( t 0 ) = x 0 \bm{x}(t_{0}) = \bm{x}_{0} x(t0)=x0 x ( t f ) = x f \bm{x}(t_{f}) = \bm{x}_{f} x(tf)=xf x ( t ) ∈ R n \bm{x}(t) \in \mathbb{R}^{n} x(t)Rn,则极值轨线符合如下欧拉方程 ∂ L ∂ x − d d t ∂ L ∂ x ˙ = 0 , \frac{\partial L}{\partial \bm{x}} - \frac{\rm d}{{\rm d} t} \frac{\partial L}{\partial \dot{\bm{x}}} = \bm{0}, xLdtdx˙L=0,及横截条件(transversal condition) ( ∂ L ∂ x ˙ ) T ∣ t f δ x ( t f ) − ( ∂ L ∂ x ˙ ) T ∣ t 0 δ x ( t 0 ) = 0 , \left(\frac{\partial L}{\partial \dot{\bm{x}}}\right)^{\rm T} \Bigg|_{t_{f}} \bm{\delta} \bm{x}(t_{f}) - \left(\frac{\partial L}{\partial \dot{\bm{x}}}\right)^{\rm T}\Bigg|_{t_{0}} \bm{\delta} \bm{x}(t_{0}) = 0, (x˙L)T tfδx(tf)(x˙L)T t0δx(t0)=0, L [ x , x ˙ , λ , t ] = g [ x , x ˙ , t ] + λ T ( t ) f [ x , x ˙ , t ] L\left[\bm{x}, \dot{\bm{x}}, \bm{\lambda}, t\right] = g \left[\bm{x}, \dot{\bm{x}}, t\right] + \bm{\lambda}^{\rm T} (t) \bm{f} \left[\bm{x}, \dot{\bm{x}}, t\right] L[x,x˙,λ,t]=g[x,x˙,t]+λT(t)f[x,x˙,t]

极小值原理

在这里插入图片描述

数值计算法

若系统性能比较复杂,或无法用变量显函数表示,则可采用直接搜索法。具体可分为:

  • 区间消去法(一维搜索法)。适用于单变量极值问题,主要有裴波那西法、黄金分割法和多项式插值法;
  • 爬山法(多维搜索法)。适用于多变量极值问题,主要有坐标轮换法、步长加速法和方向加速法。

梯度型法

该方法是一种解析和数值计算结合的方法,其中包括:

  • 无约束方法:陡降法、拟牛顿法、共轭梯度法和变尺度法;
  • 有约束方法:可行方向法和梯度投影法。
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值