tensorflow自定义神经网络模型

建立和训练一个简单的模型通常涉及几个步骤:

  • 定义模型。
  • 定义损失函数。
  • 获取训练数据。
  • 运行训练数据并使用“优化器”调整变量以拟合数据。

1.定义模型

class Model(object):
  def __init__(self):
    # Initialize variable to (5.0, 0.0)
    # In practice, these should be initialized to random values.
    self.W = tf.Variable(5.0)
    self.b = tf.Variable(0.0)
    
  def __call__(self, x):
    return self.W * x + self.b
  
model = Model()

assert model(3.0).numpy() == 15.0

2.定义损失函数

def loss(predicted_y, desired_y):
  return tf.reduce_mean(tf.square(predicted_y - desired_y))

3.获取训练数据

TRUE_W = 3.0
TRUE_b = 2.0
NUM_EXAMPLES = 1000

inputs  = tf.random_normal(shape=[NUM_EXAMPLES])
noise   = tf.random_normal(shape=[NUM_EXAMPLES])
outputs = inputs * TRUE_W + TRUE_b + noise

可视化数据:

import matplotlib.pyplot as plt

plt.scatter(inputs, outputs, c='b')
plt.scatter(inputs, model(inputs), c='r')
plt.show()

print('Current loss: '),
print(loss(model(inputs), outputs).numpy())

4.模型训练

现在拥有了网络和训练数据。让我们训练它,即使用训练数据来更新模型的变量(W和b),以便使用梯度下降来减少损失。

def train(model, inputs, outputs, learning_rate):
  with tf.GradientTape() as t:
    current_loss = loss(model(inputs), outputs)
  dW, db = t.gradient(current_loss, [model.W, model.b])
  model.W.assign_sub(learning_rate * dW)
  model.b.assign_sub(learning_rate * db)
model = Model()

# Collect the history of W-values and b-values to plot later
Ws, bs = [], []
epochs = range(10)
for epoch in epochs:
  Ws.append(model.W.numpy())
  bs.append(model.b.numpy())
  current_loss = loss(model(inputs), outputs)

  train(model, inputs, outputs, learning_rate=0.1)
  print('Epoch %2d: W=%1.2f b=%1.2f, loss=%2.5f' %
        (epoch, Ws[-1], bs[-1], current_loss))

# Let's plot it all
plt.plot(epochs, Ws, 'r',
         epochs, bs, 'b')
plt.plot([TRUE_W] * len(epochs), 'r--',
         [TRUE_b] * len(epochs), 'b--')
plt.legend(['W', 'b', 'true W', 'true_b'])
plt.show()

 

当使用 TensorFlow 开发深度学习模型时,有时需要自己定义模型类。下面是一个简单的例子,展示如何使用 TensorFlow 自定义模型类。 假设我们要定义一个简单的全连接神经网络,包含一个隐藏层和一个输出层。这个神经网络的输入是一个大小为 n 的向量,输出是一个大小为 m 的向量。我们可以按照以下步骤来定义这个模型类: 1. 导入 TensorFlow 和其他必要的库: ```python import tensorflow as tf from tensorflow.keras.layers import Dense ``` 2. 定义模型类,并继承 `tf.keras.Model` 类: ```python class MyModel(tf.keras.Model): def __init__(self, n, m, hidden_units): super(MyModel, self).__init__() self.hidden_layer = Dense(hidden_units, activation='relu') self.output_layer = Dense(m, activation='softmax') ``` 在这个模型类中,我们定义了两个成员变量 `hidden_layer` 和 `output_layer`,分别表示隐藏层和输出层。这两个层都是 `Dense` 层,其中隐藏层的激活函数是 ReLU,输出层的激活函数是 Softmax。 3. 实现 `call` 方法,定义前向传播过程: ```python def call(self, inputs): x = self.hidden_layer(inputs) return self.output_layer(x) ``` 在这个方法中,我们首先将输入传递给隐藏层,然后将隐藏层的输出传递给输出层,最终返回输出层的输出。 4. 创建模型对象: ```python model = MyModel(n=10, m=5, hidden_units=20) ``` 在创建模型对象时,我们需要指定模型的输入大小 n、输出大小 m,以及隐藏层的神经元数 hidden_units。 5. 编译模型: ```python model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) ``` 在编译模型时,我们需要指定优化器、损失函数和评估指标。 6. 训练模型: ```python model.fit(x_train, y_train, epochs=10, batch_size=32, validation_data=(x_val, y_val)) ``` 在训练模型时,我们需要指定训练数据、训练轮数、批次大小和验证数据。 这就是使用 TensorFlow 自定义模型类的基本步骤。你可以根据自己的需求自定义不同的模型类,并在实际应用中使用它们。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值