在计算机视觉项目的异常检测中,基本用这几个指标来衡量算法的性能好坏。
误检率:FPR=FP/(FP+TN)
漏检率:FNR=FN/(FN+TP)
正确率:A=(TP+TN)/(TP+TN+FP+FN)
名称 | 英文缩写 | 英文全称 |
误检率 | FPR | False Predicted Ratio |
漏检率 | FNR | False Negative Ratio |
正确率 | A | Accuracy |
错误匹配 | F | false |
正确匹配 | T | true |
正类 | P | positive |
负类 | N | negative |
错误匹配,将负类预测为正类 | FP | False positive |
正确匹配,将负类预测为负类 | TN | True negative |
错误匹配,将正类预测为负类 | FN | False negative |
正确匹配,将正类预测为正类 | TP | true positive |
说明:在异常检测中我们更多的是关注事物的异常状态,所以将异常状态表示为正类,将正常状态表示为负类,如工业检测中划痕检测,显示屏有划痕是正类,没有划痕是负类。正确匹配为将正类识别为正类,将负类识别为负类,错误匹配为将正类识别为负类或将负类识别为正类。