关于计算机视觉中异常检测的一些性能指标

在计算机视觉项目的异常检测中,基本用这几个指标来衡量算法的性能好坏。

误检率:FPR=FP/(FP+TN)

漏检率:FNR=FN/(FN+TP)

正确率:A=(TP+TN)/(TP+TN+FP+FN)

名称

英文缩写

英文全称

误检率

FPR

False Predicted Ratio

漏检率

FNR

False Negative Ratio

正确率

A

Accuracy

错误匹配

F

false

正确匹配

T

true

正类

P

positive

负类

N

negative

错误匹配,将负类预测为正类

FP

False positive

正确匹配,将负类预测为负类

TN

True negative

错误匹配,将正类预测为负类

FN

False negative

正确匹配,将正类预测为正类

TP

true positive

说明:在异常检测中我们更多的是关注事物的异常状态,所以将异常状态表示为正类,将正常状态表示为负类,如工业检测中划痕检测,显示屏有划痕是正类,没有划痕是负类。正确匹配为将正类识别为正类,将负类识别为负类,错误匹配为将正类识别为负类或将负类识别为正类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三月微暖寻春笋

赠人玫瑰手有余香

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值