计算机视觉论文笔记三:核描述子在计算机视觉上的应用Kernel Descriptors for Visual Recognition

这篇论文探讨了核描述子在计算机视觉中的应用,特别是如何将梯度、颜色和形状匹配转化为核描述子。通过使用核主成分分析(KPCA)来压缩特征向量,降低计算复杂度。文章详细介绍了从梯度直方图的核观点到构建核描述子的过程,包括硬 binning 和软 binning 的区别,以及如何学习紧凑的特征表示。
摘要由CSDN通过智能技术生成
  • 2010,nips
  • 摘要

  • 方向直方图的核观点等价于对image patchs计算特定种类的match kernel
  • 把像素的特征,团起来给patch
  • 这个特定种类有三种
  • 再把这个match kernel 用kernel principle component analysis(KPCA)压缩下维度,别那么大,成为我们的主角,核描述子
  • 优点就是核描述子易于设计,并且任何类型的像素级特征都能转化成核描述子

Introduction

要得到核描述子,分为如下三步:

  1. 用像素特征设计match kernels
  2. 通过kernel principle component analysis(KPCA)学习到压缩基础向量(compact basis vector)
  3. 把无穷维度的特征向量映射到刚才提到的基础向量(basis vector)

手工特征不好提取因为图片的空间扰动,比方说正面侧面,有很强的结构性,并且完美的传说中的特征向量维度很高。

  • 之前说的三种特征,本片论文是:梯度,颜色,形状的像素特征。
  • 最相关的工作是efficient match kernels,如果对于手工特征很感兴趣,可以看下论文

梯度直方图的核观点(要是着急可跳过 You jump, I jump,实际是skip)

不讲故事,直接来。

  • 什么是梯度直方图

像素z和他周围的像素颜色可能相同,可能不同,找个差别最大的连起来,这个向量,当作该像素点对于颜色的梯度(注意有大小有方向)。现在我取比方说3*3块内的像素的颜色梯度,每个像素都去投票,比如说我把360度分成4块(orientation binning),你的梯度在哪块,那个块就加一,这样把九个像素投好票,我就有一个直方图,横坐标是四,纵坐标加起来是九。简单粗暴,但是科学研究变量很多,比如说你可以把360度分成9块,比如说你可以取1600个像素,比如说你可以和离你4步远的像素计算梯度。所以我就是举个例子说明什么是梯度直方图。

  • 再说说我们论文具体怎么表示

  • d维向量还有公式(1)怎么用呢,比方说你分成了四块,落在第一块(1,0,0,0),落在第二块(0,1,0,0),以此类推。
  • 2  公式(2)做了一个向量长度&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值