LeetCode-Median of Two Sorted Arrays

LeetCode-Median of Two Sorted Arrays

想不到距离上次刷LeetCode已经有两年了,惭愧惭愧。希望这次能坚持刷下去,先全部刷完LeetCode再刷其他的oj系统。博客以后只用来整理经典、有意义的问题


今天写的是一道经典的查找题Median of Two Sorted Arrays:

There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

分析

在两个排序好的数组中找出它们的中值,并且要求时间复杂度为O(log (m+n))。这道题可以把它转换为在两个排序的数组中找第k大的元素。不考虑时间复杂度,最直观的解法是直接merge两个数组,然后排序,输出第k个元素即可。这样时间复杂度为O(m + n)。
不过,对于两个排序好的数组,我可以不用排序这么昂贵的操作。我们可以使用双指针,pa、pb分别指向A、B两个数组的开头。如果(pa)<(pb),则pa++, m++;反之,如果(pb)<(pa),则pb++, m++。当m等于k时,就得到了我们的答案。时间复杂度O(k),空间复杂度O(1)。但当k很大是,时间复杂度还是趋向于于O(m + n)。
其实上面的方法还是没有很好运用排序数组的性质。对于排序数组查找,较好的方法自然是二分查找。
我们假设A、B的大小都大于k/2,然后比较A[k/2]与B[k/2]的大小,如果A[k/2]

代码

一、循环版本

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {

        int size1 = nums1.size(), size2 = nums2.size();

        if ((size1 + size2) % 2 == 0)
            return (findTheKnum(nums1, nums2, (size1 + size2) / 2) + findTheKnum(nums1, nums2, (size1 + size2) / 2 + 1)) / 2.0;
        else
            return findTheKnum(nums1, nums2, (size1 + size2) / 2 + 1);


    }
    int findTheKnum(vector<int>& nums1, vector<int>& nums2, int k)
    {
        int first1, first2, last1, last2, k1, k2;
        first1 = first2 = 0;    //代表数组起始索引
        last1 = nums1.size() - 1;   //代表数组末尾索引
        last2 = nums2.size() - 1;
        while (first1 <= last1 && first2 <= last2)
        {
            int size1 = last1 - first1 + 1;
            int size2 = last2 - first2 + 1;
            if (k == 1)
            {
                return nums1[first1] < nums2[first2] ? nums1[first1] : nums2[first2];
            }
            k1 = k / 2;
            k2 = k - k1;     //保证无论k为奇偶时都有k1+k2 等于k
            if (k1 > size1)   //判断k1、k2 是否越界
            {
                k1 = size1;
                k2 = k - k1;
            }
            else if (k2 > size2)
            {
                k2 = size2;
                k1 = k - k2;
            }
            if (nums1[first1 + k1 - 1] == nums2[first2 + k2 - 1])
            {
                return nums1[first1 + k1 - 1];
            }
            else if (nums1[first1 + k1 - 1] < nums2[first2 + k2 - 1])
            {
                first1 += k1;
                k -= k1;
            }
            else
            {
                first2 += k2;
                k -= k2;
            }
        }
        if (first1 > last1)  //nums1为空
        {
            return nums2[first2 + k - 1];
        }
        if (first2 > last2)  //nums2为空
        {
            return nums1[first1 + k - 1];
        }
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
可以使用二分查找算法来解决这个问题。 首先,我们可以将两个数组合并成一个有序数组,然后求出中位数。但是,这个方法的时间复杂度为 $O(m + n)$,不符合题目要求。因此,我们需要寻找一种更快的方法。 我们可以使用二分查找算法在两个数组中分别找到一个位置,使得这个位置将两个数组分成的左右两部分的元素个数之和相等,或者两部分的元素个数之差不超过 1。这个位置就是中位数所在的位置。 具体来说,我们分别在两个数组中二分查找,假设现在在第一个数组中找到了一个位置 $i$,那么在第二个数组中对应的位置就是 $(m + n + 1) / 2 - i$。如果 $i$ 左边的元素个数加上 $(m + n + 1) / 2 - i$ 左边的元素个数等于 $m$ 个,或者 $i$ 左边的元素个数加上 $(m + n + 1) / 2 - i$ 左边的元素个数等于 $m + 1$ 个,则这个位置就是中位数所在的位置。 具体的实现可以参考以下 Java 代码: ```java public double findMedianSortedArrays(int[] nums1, int[] nums2) { int m = nums1.length, n = nums2.length; if (m > n) { // 保证第一个数组不大于第二个数组 int[] tmp = nums1; nums1 = nums2; nums2 = tmp; int t = m; m = n; n = t; } int imin = 0, imax = m, halfLen = (m + n + 1) / 2; while (imin <= imax) { int i = (imin + imax) / 2; int j = halfLen - i; if (i < imax && nums2[j - 1] > nums1[i]) { imin = i + 1; // i 太小了,增大 i } else if (i > imin && nums1[i - 1] > nums2[j]) { imax = i - 1; // i 太大了,减小 i } else { // i 是合适的位置 int maxLeft = 0; if (i == 0) { // nums1 的左边没有元素 maxLeft = nums2[j - 1]; } else if (j == 0) { // nums2 的左边没有元素 maxLeft = nums1[i - 1]; } else { maxLeft = Math.max(nums1[i - 1], nums2[j - 1]); } if ((m + n) % 2 == 1) { // 总元素个数是奇数 return maxLeft; } int minRight = 0; if (i == m) { // nums1 的右边没有元素 minRight = nums2[j]; } else if (j == n) { // nums2 的右边没有元素 minRight = nums1[i]; } else { minRight = Math.min(nums1[i], nums2[j]); } return (maxLeft + minRight) / 2.0; } } return 0.0; } ``` 时间复杂度为 $O(\log\min(m, n))$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值