自然语言处理阅读第一弹

本文深入探讨自然语言处理中的重要模型,包括Transformer架构、ELMO的上下文词向量、BERT的Masked Language Model和Next Sentence Prediction任务、ERNIE的知识整合策略以及GPT的Decoder结构改进。
摘要由CSDN通过智能技术生成

Transformer架构

Embeddings from Language Model (ELMO)

Bidirectional Encoder Representations from Transformers (BERT)

  • BERT就是原生transformer中的Encoder
  • 两个学习任务:MLM和NSP
    • Masked Language Model:将输入句子中的某些token随机替换为[MASK],然后基于上下文预测这些被替换的token。学习局部语义和上下文依赖关系。这有助于BERT理解每个词的表达。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值