Provement of Winner-Khintchine formula
Winner-Khintchine formula(维纳—辛钦公式 ):
|| **维纳-辛钦定理,又称维纳-辛钦-爱因斯坦定理或辛钦-柯尔莫哥洛夫定理。**
|| **该定理指出:宽平稳随机过程的功率谱密度是其自相关函数的傅立叶变换。
- 维纳-辛钦定理证明
-
- 维纳-辛钦定理证明
维纳-辛钦定理证明
- 维纳-辛钦定理证明
-
- 平稳随机信号的功率谱密度是由确定信号的能量谱密度及功率谱密度引申来的。
如果信号 s(t) 不满足 ∫∞−∞s(t)2dt<∞ ,但是满足
P=limT→+∞1Ts2(t)dt<∞
——称为 功率 信号。
对于功率信号,以下关系成立:
首先定义 sT(t)={ s(t) |t|≥T20 |t|≤T2
因此,信号的功率
p=limT→+∞1T∫T2−T2s2T(t)dt=limT→+∞1T12π∫T2−T2s2T(t)dt=limT→+∞1T12π∫T2−T2|ST(w)|2dw (Parseval Theorem)
其中, ST(w)=∫∞−
- 平稳随机信号的功率谱密度是由确定信号的能量谱密度及功率谱密度引申来的。