【Derivation】维纳—辛钦公式证明

本文详细介绍了维纳-辛钦公式的证明过程,重点阐述了功率信号的概念和性质。通过Parseval定理,建立了平稳随机信号功率谱密度与其自相关函数傅里叶变换之间的关系,揭示了平稳随机信号的功率谱密度可以通过自相关函数计算得出,这是维纳-辛钦定理的核心内容。
摘要由CSDN通过智能技术生成

Provement of Winner-Khintchine formula
Winner-Khintchine formula(维纳—辛钦公式 ):

||   **维纳-辛钦定理,又称维纳-辛钦-爱因斯坦定理或辛钦-柯尔莫哥洛夫定理。**
||   **该定理指出:宽平稳随机过程的功率谱密度是其自相关函数的傅立叶变换。
  • 维纳-辛钦定理证明
    • 维纳-辛钦定理证明
      维纳-辛钦定理证明
    • 平稳随机信号的功率谱密度是由确定信号的能量谱密度及功率谱密度引申来的。
      如果信号 s(t) 不满足 s(t)2dt< ,但是满足
      P=limT+1Ts2(t)dt<

      ——称为 功率 信号。
      对于功率信号,以下关系成立:
      首先定义 sT(t)={ s(t)          |t|T20              |t|T2
      因此,信号的功率
      p=limT+1TT2T2s2T(t)dt=limT+1T12πT2T2s2T(t)dt=limT+1T12πT2T2|ST(w)|2dw                  (Parseval  Theorem)

      其中, ST(w)=
总结一下FFT和维纳辛钦求解PSD的问题-功率谱图.rar 早上在论坛上问了两个问题, 一个是关于FFT求频谱时纵坐标的值问题 https://www.ilovematlab.cn/thread-27092-1-1.html 还有一个是用维纳辛钦求解PSD时出现的问题 https://www.ilovematlab.cn/thread-27133-1-1.html 经过达人们的指点,和自己的总结,获得一点心得,在这里与大家分享一下:) 1.FFT求频谱 [CODE] Fs = 40; n = 0:1/Fs:159*1/Fs; x = sin sin; N = length; X = fftshift); Px1 = X.*conj/N; plot*Fs/N,Px1); grid on; axis title; 首先,fftshift的问题,以前上数字信号处时,老师专门给提出了这个函数,但是我发现论坛里好多不太明白这个函数意义的,OO~,一般,fft得到的是频谱范围在【0-2*pi】范围内的频谱,以高频pi为中心,但是一般使用过程中,使用的频谱习惯以低频0为中心,fftshift的功能就是将频谱进行移位,使之在【-pi,pi】之间; 另外,纵坐标的问题,版主edifier2008提示说用/N的方法归一化,我试了一下,每次采样长度变大时,纵坐标的整体值都会变大,/N之后,值变为1之内了,但是并不是论算法中得到的1. 图形如下: fft.jpg fft 2.维纳辛钦求解功率谱的问题 [CODE] Fs = 40; n = 0:1/Fs:159*1/Fs; x = sin sin; N = length; Rx = xcorr; Px2 = fftshift); plot*Fs/,abs); grid on; axis title; 图形如下: fftwei.jpg 程序中可以看出,也要使用fftshift对fft得到的频谱进行移位以得到以低频0为中心的频谱,另外,得到的功率谱纵轴值特别大,是不是也需要除以采样长度,我试了一下,仍然是很大,个人认为,在MATLAB中计算自相关函数以及计算FFT时,都没有对加和进行归一,将/N这一个系数可能都给省略掉了。 此外,我在很多教材里面看了不少里面的例题,都没有注意纵轴值的问题,我觉得在进行频谱分析,重点在于频率点,以及相近频率点的谱图是不是能够分辨出来,而对于各谱的大小,有个相对的比较即可。 不当之处,还望大家给与指正,:) :victory:
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值