光学里面,维纳-辛钦定理讲的是光场的能量谱密度和光场的一阶相干函数之间的关系。
先规定傅里叶变换为\(F(\omega)=\int f(t)\exp(i\omega t)\text{d}t\),反变换为\(f(t)=\frac{1}{2\pi}\int F (\omega)\exp(-i\omega t)\text{d}t\).
按此定义,帕塞瓦尔等式就是
\[ \int_{-\infty}^\infty|f(t)|^2\text{dt}=\frac{1}{2\pi}\int_{-\infty}^\infty|F(\omega)|^2\text{d}\omega \]
上式左端表征着信号的能量。
对于分布在区域\(V\)内的光场,其能量有电场部分和磁场部分的贡献。设电场部分表达式为\(E(\vec{r},t)=E_0\exp[i(\vec{k}\cdot\vec{r}-\omega t)]\),于是电场部分的能量密度为\(\frac{1}{2}\epsilon_0 |E|^2\);而磁场贡献和电场相等,于是总能量密度为\[\epsilon_0|E|^2\]. 注意,这里并未取空间平均,因此没有额外的\(\frac{1}{2}\)因子。
通过帕塞尔瓦等式可