【Derivation】MarkDown Letex编码 之 维纳—辛钦公式证明 (Winner-Khintchine formula)

**Winner-Khintchine formula(维纳—辛钦公式 ):**

    ||   **维纳-辛钦定理,又称维纳-辛钦-爱因斯坦定理或辛钦-柯尔莫哥洛夫定理。**
    ||   **该定理指出:宽平稳随机过程的功率谱密度是其自相关函数的傅立叶变换。

* 维纳-辛钦定理证明
* * 维纳-辛钦定理证明
*维纳-辛钦定理证明 *

* * 平稳随机信号的功率谱密度是由确定信号的能量谱密度及功率谱密度引申来的。
如果信号$s(t)$不满足$\int^\infty_{-\infty }s(t)^2dt<∞$ ,但是满足
     $$P=\lim_{ T \rightarrow+\infty}\frac{1}{T}s^2(t)dt<\infty$$
——称为 功率 信号。
对于功率信号,以下关系成立: 
首先定义$s_T(t)=\{_{0\ \ \ \ \ \ \ \ \ \ \ \ \ \   |t|\leq\frac{T}{2}}^{s(t)\ \ \ \ \ \ \ \ \ \   |t|\geq\frac{T}{2}}$
因此,信号的功率
$$p=\lim_{ T \rightarrow+\infty}\frac{1}{T}\int_{-\frac{T}{2} }^{\frac{T}{2}}s_T^2(t)dt=\lim_{ T \rightarrow+\infty}\frac{1}{T} \frac{1}{2\pi}\int^{\frac{T}{2}}_{\frac{-T}{2}}s^2_T(t)dt = \lim_{ T \rightarrow+\infty}\frac{1}{T}\frac{1}{2\pi}\int_{-\frac{T}{2} }^{\frac{T}{2}}|S_T(w)|^2dw \ \ \ \ \ \ \ \ \ \ \ \ \\\ \ \ \ \ \ (Parseval \ \ Theorem)$$
其中,$S_T(w)=\int^{\infty}_{-\infty}s_T(t)e^{-jwt}dt $
最后可得$$P=\frac{1}{2\pi}\int^{\infty}_{-\infty}\lim_{ T \rightarrow+\infty}\frac{|S_T(w)|^2}{T}dt $$
定义$P(w)=\lim_{ T \rightarrow+\infty}\frac{|S_T(w)|^2}{T} $为功率信号%S(t)的功率谱密度。
对于平稳随机信号$\{x(t)\}$,它的每一个样本$x^{(k)}(t)$,一般不满足能量信号的要求,但满足功率信号的要求,因此以下关系成立:$$X_T^{(k)}(w)=\lim_{ T \rightarrow+\infty}\int^{\frac{T}{2}}_{-\frac{T}{2}}x_T^{k}(t)e^{jwt}dt $$
其中$x_{T}^{(k)}(t)=\{_{0\ \ \ \ \ \ \ \ \ \ \ \ \ \   |t|>\frac{T}{2}}^{x^{(k)}(t)\ \ \ \ \   |t|\leq\frac{T}{2}}$
样本${x^{(k)}(t)}$的功率谱密度为
$$P_X^{(k)}(w)=\lim_{ T \rightarrow+\infty}\frac{|S_T(w)|^2}{T} $$
而$\frac{1}{2\pi}\int P_X^{(k)}dw=\lim_{ T \rightarrow\infty}\int^{\frac{T}{2}}_{\frac{-T}{2}}[s^{(k)}(t)]^2dt $是$s^{(k)}(t)$的平均功率.
由于$s^{(k)}(t)$是$[s(t)]$的一个样本,因此$P_X^{(k)}(w)$也将随着不同的样本而变化。对于平稳随机信号来说,其最终定义的功率谱密度应该为$P_X(w)=E\{P_X^{(k)}(w)\} $
而——**大头来了**
$$P_X(w)=E\{P_X^{{k}}\}=E\{\lim_{ T \rightarrow\infty}\frac{1}{T}(w)^2\}=
E\{\lim_{ T \rightarrow\infty}\int^{\frac{T}{2}}_{\frac{-T}{2}}\int^{\frac{T}{2}}_{\frac{-T}{2}}x^{(k)}(t_2)e^{-jw(t_1-t_2)}dt_1dt_2\}=
\lim_{ T \rightarrow\infty}\int^{\frac{T}{2}}_{\frac{-T}{2}}\int^{\frac{T}{2}}_{\frac{-T}{2}}R_X(t_1-t_2)e^{-jw(t_1-t_2)}dt_1dt_2$$
对于平稳随机信号
$$P_X(w)=\lim_{ T \rightarrow\infty}\int^{\frac{T}{2}}_{\frac{-T}{2}}\int^{\frac{T}{2}}_{\frac{-T}{2}}s^2_T(t)dt_1dt_2$$
令$\tau = t_1-t_2$,将上式的积分变量变换为$ \tau $和$ t_2 $,有
$$P_X(w)=\lim_{ T \rightarrow\infty}\int^{T}_{-T}\int^{\frac{T}{2}-\tau}_{\frac{-T}{2}-\tau}R_X{(\tau)}e^{-jw\tau}d\tau dt_2$$   $$ =
\lim_{ T \rightarrow\infty }\frac{1}{T}\{ \int^{T}_{0}\int^{\frac{T}{2}-\tau}_{-\frac{T}{2}-\tau}R_X{(\tau)}e^{-jw\tau}d\tau dt_2 + \int^{0}_{-T}\int^{\frac{T}{2}+\tau}_{-\frac{T}{2}-\tau}R_X{(\tau)}e^{-jw\tau}d\tau dt_2 \}$$    $$=  \lim_{ T \rightarrow\infty }\frac{1}{T}\{ \int^{T}_{0}(T-\tau)R_X{(\tau)}e^{-jw\tau}d\tau  +\int^{0}_{-T}(T+\tau)R_X{(\tau)}e^{-jw\tau}d\tau  \} $$                               $$=
\lim_{ T \rightarrow\infty}\{ \int^{T}_{0}(1-\frac{\tau}{T} )e^{-jw\tau}d\tau + \int^{0}_{-T}(1+\frac{\tau}{T} )e^{-jw\tau}d\tau $$                   $$=
\lim_{ T \rightarrow\infty} \{\int^{T}_{-T} (1-\frac{|\tau|}{T})R_X{(\tau)}e^{-jw\tau}d\tau  \} $$    $$= \int_{-\infty}^{\infty}R_X (\tau)e^{-jw\tau}d\tau$$

所以有
$$P_X(w)=\int_{-\infty}^{\infty}R_X(\tau) e^{-jw\tau}d\tau$$

上式表明,平稳随机信号的**功率谱密度**及其**自相关函数**的**傅里叶变换**,而$$R_X(\tau) = \frac{1}{2\pi}\int_{-\infty}^{\infty}P_X(w)E^{jw\tau}dw$$

平稳随机信号的**功率谱密度**及其**自相关函数**互为**傅里叶变换对**,这就是著名的**Winner-Khintchine**定理



  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值