维纳—辛钦(Winner-Khitchine)定理的证明

1. 维纳—辛钦(Winner-Khitchine)定理

宽平稳随机过程X(t)的功率谱密度S_X(\omega)是其自相关函数R_X(\tau)的Fourier变换,

S_X(\omega) = \int_{-\infty}^{\infty}R_X(\tau)e^{-j\omega\tau}d\tau

2. 能量信号与功率信号

对于信号s(t),若其满足

\int_{-\infty}^{\infty}|s(t)|^2dt < \infty

则信号s(t)被称为能量信号。

若其不满足上面能量信号的定义,但其满足

P = \lim_{T\rightarrow +\infty}\frac{1}{T}\int_{-T/2}^{T/2}|s(t)|^2dt < \infty

则信号s(t)被称为功率信号。

3. 确定信号的功率谱密度

假设信号s(t)为功率信号,则可定义

s_T(t) = \left\{\begin{matrix} s(t) & |t| \leqslant \frac{T}{2}\\ 0 & |t| > \frac{T}{2} \end{matrix}\right.

因此,信号的功率为

P =\lim_{T\rightarrow +\infty}\frac{1}{T}\int_{-T/2}^{T/2}|s_T(t)|^2dt =\lim_{T\rightarrow +\infty}\frac{1}{T}\int_{-\infty}^{\infty}|s_T(t)|^2dt

根据Parseval定理可得

P =\lim_{T\rightarrow +\infty}\frac{1}{T}\int_{-\infty}^{\infty}|s_T(t)|^2dt = \lim_{T\rightarrow +\infty}\frac{1}{T}\frac{1}{2\pi}\int_{-\infty}^{\infty}|S_T(\omega)|^2d\omega

整理可得

P = \lim_{T\rightarrow +\infty}\frac{1}{T}\frac{1}{2\pi}\int_{-\infty}^{\infty}|S_T(\omega)|^2d\omega = \frac{1}{2\pi}\int_{-\infty}^{\infty}\lim_{T\rightarrow +\infty}\frac{1}{T}|S_T(\omega)|^2d\omega

定义

P(\omega) = \lim_{T\rightarrow +\infty}\frac{|S_T(\omega)|^2}{T}

为功率信号s(t)的功率谱密度。

4. 维纳—辛钦(Winner-Khitchine)定理的证明

假设x(t,e_i)为随机过程X(t)的一个样本函数,通常x(t,e_i)不满足能量信号的要求,但满足功率信号的要求,因此可定义

x_T(t,e_i) = \left\{\begin{matrix} x(t,e_i) & |t|\leqslant \frac{T}{2}\\ 0 & |t|> \frac{T}{2} \end{matrix}\right.

该函数的Fourier变换为

X_T(\omega, e_i) = \int_{-\infty}^{\infty}x_T(t,e_i)e^{-j\omega t}dt = \int_{-T/2}^{T/2}x(t,e_i)e^{-j\omega t}dt

因此,样本函数x(t,e_i)的功率谱密度为

S_X(\omega, e_i) = \lim_{T\rightarrow +\infty}\frac{|X_T(\omega, e_i)|^2}{T}

样本 函数x(t,e_i)的平均功率为

\frac{1}{2\pi}\int_{-\infty}^{\infty}S_X(\omega, e_i)d\omega

x(t,e_i)为随机过程X(t)的一个样本函数,因此,其功率谱密度S(\omega, e_i)也将随着样本的不同而不同。对于平稳随机过程而言,功率谱密度应该是样本函数的功率谱密度的统计平均

S_X(\omega) = E[S_X(\omega, e_i)] = E\left [ \lim_{T\rightarrow +\infty}\frac{|X_T(\omega, e_i)|^2}{T}\right ]= \lim_{T\rightarrow +\infty}\frac{1}{T}E[|X_T(\omega, e_i)|^2]

将Fourier变换X_T(\omega, e_i)的表达式代入上式,可得

S_X(\omega)\\ = \lim_{T\rightarrow +\infty}\frac{1}{T}E\left [ \int_{-T/2}^{T/2}x^*(t_1,e_i)e^{j\omega t_1}dt_1 \int_{-T/2}^{T/2}x(t_2,e_i)e^{-j\omega t_2}dt_2\right ]\\ =\lim_{T\rightarrow +\infty}\frac{1}{T}\int_{-T/2}^{T/2}\int_{-T/2}^{T/2}E[x^*(t_1,e_i)x(t_2,e_i)]e^{-j\omega (t_2-t_1)}dt_1dt_2

\tau = t_2 - t_1,将积分变量变换为\taut_1,则

S_X(\omega)\\ =\lim_{T\rightarrow +\infty}\frac{1}{T}\int_{-T/2}^{T/2}\int_{-T/2}^{T/2}R_X(\tau)e^{-j\omega \tau}d\tau dt_1\\ = \lim_{T\rightarrow +\infty}\frac{1}{T}\left \{ \int_{0}^{T}d\tau \int_{-\frac{T}{2}}^{\frac{T}{2}-\tau} R_X(\tau)e^{-j\omega \tau}dt_1 + \int_{-T}^{0}d\tau \int_{-\frac{T}{2} - \tau}^{\frac{T}{2}} R_X(\tau)e^{-j\omega \tau}dt_1 \right \}\\ = \lim_{T\rightarrow +\infty}\frac{1}{T}\left \{ \int_{0}^{T}(T-\tau)R_X(\tau)e^{-j\omega \tau}d\tau+ \int_{-T}^{0}(T+\tau)R_X(\tau)e^{-j\omega \tau}d\tau \right \}\\ = \lim_{T\rightarrow +\infty}\left \{ \int_{0}^{T}(1-\frac{\tau}{T})R_X(\tau)e^{-j\omega \tau}d\tau+ \int_{-T}^{0}(1+\frac{\tau}{T})R_X(\tau)e^{-j\omega \tau}d\tau \right \}\\ = \lim_{T\rightarrow +\infty}\int_{-T}^{T}(1-\frac{|\tau |}{T})R_X(\tau)e^{-j\omega \tau}d\tau\\ = \int_{-\infty}^{\infty}R_X(\tau)e^{-j\omega \tau}d\tau\\

因此,平稳随机过程X(t)的功率谱密度S_X(\omega)是其自相关函数R_X(\tau)的Fourier变换。

  • 10
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
总结一下FFT和维纳辛钦定理求解PSD的问题-功率谱图.rar 早上在论坛上问了两个问题, 一个是关于FFT求频谱时纵坐标的值问题 https://www.ilovematlab.cn/thread-27092-1-1.html 还有一个是用维纳辛钦定理求解PSD时出现的问题 https://www.ilovematlab.cn/thread-27133-1-1.html 经过达人们的指点,和自己的总结,获得一点心得,在这里与大家分享一下:) 1.FFT求频谱 [CODE] Fs = 40; n = 0:1/Fs:159*1/Fs; x = sin sin; N = length; X = fftshift); Px1 = X.*conj/N; plot*Fs/N,Px1); grid on; axis title; 首先,fftshift的问题,以前上数字信号处时,老师专门给提出了这个函数,但是我发现论坛里好多不太明白这个函数意义的,OO~,一般,fft得到的是频谱范围在【0-2*pi】范围内的频谱,以高频pi为中心,但是一般使用过程中,使用的频谱习惯以低频0为中心,fftshift的功能就是将频谱进行移位,使之在【-pi,pi】之间; 另外,纵坐标的问题,版主edifier2008提示说用/N的方法归一化,我试了一下,每次采样长度变大时,纵坐标的整体值都会变大,/N之后,值变为1之内了,但是并不是论算法中得到的1. 图形如下: fft.jpg fft 2.维纳辛钦定理求解功率谱的问题 [CODE] Fs = 40; n = 0:1/Fs:159*1/Fs; x = sin sin; N = length; Rx = xcorr; Px2 = fftshift); plot*Fs/,abs); grid on; axis title; 图形如下: fftwei.jpg 程序中可以看出,也要使用fftshift对fft得到的频谱进行移位以得到以低频0为中心的频谱,另外,得到的功率谱纵轴值特别大,是不是也需要除以采样长度,我试了一下,仍然是很大,个人认为,在MATLAB中计算自相关函数以及计算FFT时,都没有对加和进行归一,将/N这一个系数可能都给省略掉了。 此外,我在很多教材里面看了不少里面的例题,都没有注意纵轴值的问题,我觉得在进行频谱分析,重点在于频率点,以及相近频率点的谱图是不是能够分辨出来,而对于各谱的大小,有个相对的比较即可。 不当之处,还望大家给与指正,:) :victory:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

带着地球去浪一浪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值