Levy 过程与 Levy-Khintchine 公式
Levy 过程
定义:Levy 过程
X = { X t : t ≥ 0 } : ( Ω , F , P ) → R X=\{X_t:t\geq0\}:(\Omega,\mathcal{F},\mathbb{P})\to\mathbb{R} X={Xt:t≥0}:(Ω,F,P)→R 是 L e ˊ v y L\acute{e}vy Leˊvy 过程,若:
(1) X X X 的轨道几乎处处左极右连( X ( ⋅ , ω ) X(\cdot,\omega) X(⋅,ω) 关于 t t t 几乎处处左极限存在且右连续);
(2) P ( X 0 = 0 ) = 1 \mathbb{P}(X_0=0)=1 P(X0=0)=1;
(3)对任意 0 ≤ s ≤ t 0\leq s\leq t 0≤s≤t, X t − X s = d X t − s X_t-X_s\mathop{=}\limits^d X_{t-s} Xt−Xs=dXt−s;
(4)对任意 0 ≤ s ≤ t 0\leq s\leq t 0≤s≤t, X t − X s ⊥ { X u : u ≤ s } X_t-X_s\perp\{X_u:u\leq s\} Xt−Xs⊥{Xu:u≤s}.
我们接下来将定义无限可分分布(infinitely divisible distribution),并说明其能与 L e ˊ v y L\acute{e}vy Leˊvy 过程建立一一对应关系,据此定义 L e ˊ v y L\acute{e}vy Leˊvy 过程的特征指数。
定义:无限可分分布
称一个随机变量
U
U
U 有无限可分分布,若对任意
n
=
1
,
2
,
⋯
n=1,2,\cdots
n=1,2,⋯ 均存在独立同分布的随机变量
U
1
,
n
,
⋯
,
U
n
,
n
U_{1,n},\cdots,U_{n,n}
U1,n,⋯,Un,n,使得
U
=
d
U
1
,
n
+
⋯
+
U
n
,
n
U\mathop{=}\limits^dU_{1,n}+\cdots+U_{n,n}
U=dU1,n+⋯+Un,n
我们可以对每个无限可分分布的变量定义其特征指数(characteristic exponent),这依赖于以下的引理:
定义 and 引理
令 U U U 为无限可分随机变量,设 h h h 为其特征函数,则:
(1) h h h 为连续非零函数,且 h ( 0 ) = 1 h(0)=1 h(0)=1;
(2)存在唯一的连续复值函数 f f f,满足 e f ( θ ) = h ( θ ) e^{f(\theta)}=h(\theta) ef(θ)=h(θ) 且 f ( 0 ) = 0 f(0)=0 f(0)=0,记为 f = log h f=\log h f=logh,并称 f f f 为 U U U 的特征指数。
注意到对每个无限可分的随机变量,都可以定义其特征指数,那么对 L e ˊ v y L\acute{e}vy Leˊvy 过程,每个 t t t 对应的随机变量 X t X_t Xt 都是无限可分随机变量,理论上,每个 L e ˊ v y L\acute{e}vy Leˊvy 过程对应一族无限可分分布,也就应该有一族特征函数来对应这个随机过程。但我们当然不希望如此,是否能有一个代表性的特征函数来代表整个 L e ˊ v y L\acute{e}vy Leˊvy 过程,或者换句话说,是否能用一个无限可分分布来代表整个 L e ˊ v y L\acute{e}vy Leˊvy 过程。我们可以说明,这是能够做到的。
Levy 过程与无限可分分布一一对应
若 X X X 为 L e ˊ v y L\acute{e}vy Leˊvy 过程,则 X t X_t Xt 均有无限可分分布。反之,若 U U U 为无限可分分布,则存在唯一(在分布的意义下)的 L e ˊ v y L\acute{e}vy Leˊvy 过程 X X X,使得 X 1 = d U X_1\mathop{=}\limits^dU X1=dU.
以上命题的存在唯一性的证明我们忽略,重点在于,我们要说明,这个 U U U 可以代表整个 L e ˊ v y L\acute{e}vy Leˊvy 过程,也即是说, U U U 的特征指数可以代表整个 L e ˊ v y L\acute{e}vy Leˊvy 过程。记 Ψ t \Psi_t Ψt 为 X t X_t Xt 的特征指数,即 e Ψ t ( θ ) = E ( e i θ X t ) e^{\Psi_t(\theta)}=E(e^{i\theta X_t}) eΨt(θ)=E(eiθXt),则 U U U 的特征指数为 Ψ 1 \Psi_1 Ψ1. 下面我们说明: Ψ t = t Ψ 1 \Psi_t=t\Psi_1 Ψt=tΨ1,于是 Ψ 1 \Psi_1 Ψ1 可以代表所有 Ψ t \Psi_t Ψt.
首先由于 X t = X t / n + ( X 2 t / n − X t / n ) + ⋯ + ( X t − X ( n − 1 ) t / n ) X_t=X_{t/n}+(X_{2t/n}-X_{t/n})+\cdots+(X_t-X_{(n-1)t/n}) Xt=Xt/n+(X2t/n−Xt/n)+⋯+(Xt−X(n−1)t/n),故 Ψ t = n Ψ t / n \Psi_t=n\Psi_{t/n} Ψt=nΨt/n,进一步 n Ψ 1 ( θ ) = Ψ n ( θ ) = m Ψ n / m ( θ ) n\Psi_1(\theta)=\Psi_n(\theta)=m\Psi_{n/m}(\theta) nΨ1(θ)=Ψn(θ)=mΨn/m(θ),则对任意有理数 q q q,均有 Ψ q = q Ψ 1 \Psi_q=q\Psi_1 Ψq=qΨ1,再由左极右连的性质,我们可以由有理数推知全体实数,即有 Ψ t ( θ ) = t Ψ 1 ( θ ) , ∀ t ∈ R + \Psi_t(\theta)=t\Psi_1(\theta),\forall t\in\mathbb{R}_+ Ψt(θ)=tΨ1(θ),∀t∈R+. 综上,我们可以将 L e ˊ v y L\acute{e}vy Leˊvy 过程 X X X 的特征指数定义为 X 1 X_1 X1 的特征指数,记为 Ψ \Psi Ψ.
在此基础上,我们可以给出 L e ˊ v y L\acute{e}vy Leˊvy 过程特征指数的表达形式,即下面的 Levy-Khintchine 公式。
Levy-Khintchine 公式
定理:Levy-Khintchine 公式
对任意
L
e
ˊ
v
y
L\acute{e}vy
Leˊvy 过程,记其特征指数为
Ψ
\Psi
Ψ,则存在(唯一)的
a
∈
R
,
σ
≥
0
a\in\mathbb{R},\sigma\geq 0
a∈R,σ≥0 和测度
Π
\Pi
Π 满足
Π
(
{
0
}
)
=
0
,
∫
R
1
∧
x
2
Π
(
d
x
)
<
∞
\Pi(\{0\})=0,\int_{\mathbb{R}}1\wedge x^2\Pi(dx)<\infty
Π({0})=0,∫R1∧x2Π(dx)<∞,满足
Ψ
(
θ
)
=
i
a
θ
−
1
2
σ
2
θ
2
+
∫
R
(
e
i
θ
x
−
1
−
i
θ
x
1
[
−
1
,
1
]
(
x
)
)
Π
(
d
x
)
\Psi(\theta)=ia\theta-\dfrac{1}{2}\sigma^2\theta^2+\int_{\mathbb{R}}(e^{i\theta x}-1-i\theta x\mathbb{1}_{[-1,1]}(x))\Pi(dx)
Ψ(θ)=iaθ−21σ2θ2+∫R(eiθx−1−iθx1[−1,1](x))Π(dx)
反之,对于任意容许的
(
a
,
σ
,
Π
)
(a,\sigma,\Pi)
(a,σ,Π),存在
L
e
ˊ
v
y
L\acute{e}vy
Leˊvy 过程
X
X
X 的特征指数由上式给出。