Levy 过程与 Levy-Khintchine 公式

Levy 过程与 Levy-Khintchine 公式


Levy 过程

定义:Levy 过程

X = { X t : t ≥ 0 } : ( Ω , F , P ) → R X=\{X_t:t\geq0\}:(\Omega,\mathcal{F},\mathbb{P})\to\mathbb{R} X={Xt:t0}:(Ω,F,P)R L e ˊ v y L\acute{e}vy Leˊvy 过程,若:

(1) X X X 的轨道几乎处处左极右连( X ( ⋅ , ω ) X(\cdot,\omega) X(,ω) 关于 t t t 几乎处处左极限存在且右连续);

(2) P ( X 0 = 0 ) = 1 \mathbb{P}(X_0=0)=1 P(X0=0)=1

(3)对任意 0 ≤ s ≤ t 0\leq s\leq t 0st X t − X s = d X t − s X_t-X_s\mathop{=}\limits^d X_{t-s} XtXs=dXts

(4)对任意 0 ≤ s ≤ t 0\leq s\leq t 0st X t − X s ⊥ { X u : u ≤ s } X_t-X_s\perp\{X_u:u\leq s\} XtXs{Xu:us}.

我们接下来将定义无限可分分布(infinitely divisible distribution),并说明其能与 L e ˊ v y L\acute{e}vy Leˊvy 过程建立一一对应关系,据此定义 L e ˊ v y L\acute{e}vy Leˊvy 过程的特征指数。

定义:无限可分分布

称一个随机变量 U U U 有无限可分分布,若对任意 n = 1 , 2 , ⋯ n=1,2,\cdots n=1,2, 均存在独立同分布的随机变量 U 1 , n , ⋯   , U n , n U_{1,n},\cdots,U_{n,n} U1,n,,Un,n,使得
U = d U 1 , n + ⋯ + U n , n U\mathop{=}\limits^dU_{1,n}+\cdots+U_{n,n} U=dU1,n++Un,n
我们可以对每个无限可分分布的变量定义其特征指数(characteristic exponent),这依赖于以下的引理:

定义 and 引理

U U U 为无限可分随机变量,设 h h h 为其特征函数,则:

(1) h h h 为连续非零函数,且 h ( 0 ) = 1 h(0)=1 h(0)=1

(2)存在唯一的连续复值函数 f f f,满足 e f ( θ ) = h ( θ ) e^{f(\theta)}=h(\theta) ef(θ)=h(θ) f ( 0 ) = 0 f(0)=0 f(0)=0,记为 f = log ⁡ h f=\log h f=logh,并称 f f f U U U 的特征指数。

注意到对每个无限可分的随机变量,都可以定义其特征指数,那么对 L e ˊ v y L\acute{e}vy Leˊvy 过程,每个 t t t 对应的随机变量 X t X_t Xt 都是无限可分随机变量,理论上,每个 L e ˊ v y L\acute{e}vy Leˊvy 过程对应一族无限可分分布,也就应该有一族特征函数来对应这个随机过程。但我们当然不希望如此,是否能有一个代表性的特征函数来代表整个 L e ˊ v y L\acute{e}vy Leˊvy 过程,或者换句话说,是否能用一个无限可分分布来代表整个 L e ˊ v y L\acute{e}vy Leˊvy 过程。我们可以说明,这是能够做到的。

Levy 过程与无限可分分布一一对应

X X X L e ˊ v y L\acute{e}vy Leˊvy 过程,则 X t X_t Xt 均有无限可分分布。反之,若 U U U 为无限可分分布,则存在唯一(在分布的意义下)的 L e ˊ v y L\acute{e}vy Leˊvy 过程 X X X,使得 X 1 = d U X_1\mathop{=}\limits^dU X1=dU.

以上命题的存在唯一性的证明我们忽略,重点在于,我们要说明,这个 U U U 可以代表整个 L e ˊ v y L\acute{e}vy Leˊvy 过程,也即是说, U U U 的特征指数可以代表整个 L e ˊ v y L\acute{e}vy Leˊvy 过程。记 Ψ t \Psi_t Ψt X t X_t Xt 的特征指数,即 e Ψ t ( θ ) = E ( e i θ X t ) e^{\Psi_t(\theta)}=E(e^{i\theta X_t}) eΨt(θ)=E(eiθXt),则 U U U 的特征指数为 Ψ 1 \Psi_1 Ψ1. 下面我们说明: Ψ t = t Ψ 1 \Psi_t=t\Psi_1 Ψt=tΨ1,于是 Ψ 1 \Psi_1 Ψ1 可以代表所有 Ψ t \Psi_t Ψt.

首先由于 X t = X t / n + ( X 2 t / n − X t / n ) + ⋯ + ( X t − X ( n − 1 ) t / n ) X_t=X_{t/n}+(X_{2t/n}-X_{t/n})+\cdots+(X_t-X_{(n-1)t/n}) Xt=Xt/n+(X2t/nXt/n)++(XtX(n1)t/n),故 Ψ t = n Ψ t / n \Psi_t=n\Psi_{t/n} Ψt=nΨt/n,进一步 n Ψ 1 ( θ ) = Ψ n ( θ ) = m Ψ n / m ( θ ) n\Psi_1(\theta)=\Psi_n(\theta)=m\Psi_{n/m}(\theta) nΨ1(θ)=Ψn(θ)=mΨn/m(θ),则对任意有理数 q q q,均有 Ψ q = q Ψ 1 \Psi_q=q\Psi_1 Ψq=qΨ1,再由左极右连的性质,我们可以由有理数推知全体实数,即有 Ψ t ( θ ) = t Ψ 1 ( θ ) , ∀ t ∈ R + \Psi_t(\theta)=t\Psi_1(\theta),\forall t\in\mathbb{R}_+ Ψt(θ)=tΨ1(θ),tR+. 综上,我们可以将 L e ˊ v y L\acute{e}vy Leˊvy 过程 X X X 的特征指数定义为 X 1 X_1 X1 的特征指数,记为 Ψ \Psi Ψ.

在此基础上,我们可以给出 L e ˊ v y L\acute{e}vy Leˊvy 过程特征指数的表达形式,即下面的 Levy-Khintchine 公式。


Levy-Khintchine 公式

定理:Levy-Khintchine 公式

对任意 L e ˊ v y L\acute{e}vy Leˊvy 过程,记其特征指数为 Ψ \Psi Ψ,则存在(唯一)的 a ∈ R , σ ≥ 0 a\in\mathbb{R},\sigma\geq 0 aR,σ0 和测度 Π \Pi Π 满足 Π ( { 0 } ) = 0 , ∫ R 1 ∧ x 2 Π ( d x ) < ∞ \Pi(\{0\})=0,\int_{\mathbb{R}}1\wedge x^2\Pi(dx)<\infty Π({0})=0,R1x2Π(dx)<,满足
Ψ ( θ ) = i a θ − 1 2 σ 2 θ 2 + ∫ R ( e i θ x − 1 − i θ x 1 [ − 1 , 1 ] ( x ) ) Π ( d x ) \Psi(\theta)=ia\theta-\dfrac{1}{2}\sigma^2\theta^2+\int_{\mathbb{R}}(e^{i\theta x}-1-i\theta x\mathbb{1}_{[-1,1]}(x))\Pi(dx) Ψ(θ)=iaθ21σ2θ2+R(eiθx1iθx1[1,1](x))Π(dx)
反之,对于任意容许的 ( a , σ , Π ) (a,\sigma,\Pi) (a,σ,Π),存在 L e ˊ v y L\acute{e}vy Leˊvy 过程 X X X 的特征指数由上式给出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值