[matlab优化算法-18期】基于遗传算法的模糊PID控制优化

遗传算法优化模糊PID控制器:原理与实践

第一节:背景介绍

在现代控制系统中,PID控制器因其结构简单、参数调整方便而被广泛应用。然而,传统PID控制器的参数整定依赖于经验或试错法,难以适应复杂系统的动态变化。模糊控制则通过模糊逻辑处理不确定性信息,具有一定的自适应能力,但其控制规则的优化依赖于专家经验。遗传算法作为一种全局优化算法,模拟生物进化过程,能够有效地搜索最优解。将遗传算法与模糊PID控制器相结合,可以实现模糊控制规则和PID参数的自动优化,提高控制系统的性能。

第二节:模糊PID控制器

2.1 模糊控制器原理

模糊控制器的核心是模糊逻辑推理。它通过模糊化接口将输入的精确值转换为模糊集合,然后根据模糊规则进行推理,最后通过解模糊接口将模糊输出转换为精确控制量。模糊控制器通常采用Mamdani推理机制,其输入输出模糊集合的隶属度函数通常为三角形、高斯型或钟形。

2.2 PID控制器

PID控制器是一种线性控制器,通过比例(P)、积分(I)和微分(D)三个参数的调整来实现对系统的控制。其控制律为: u(t)=Kp​e(t)+Ki​∫e(t)dt+Kd​dtde(t)​ 其中,Kp​、Ki​ 和 Kd​ 分别为比例、积分和微分增益。

2.3 模糊PID控制器

模糊PID控制器结合了模糊控制和PID控制的优点。它通过模糊逻辑调整PID参数,使PID控制器能够更好地适应系统的动态变化。模糊PID控制器的结构通常包括模糊化接口、模糊规则库、模糊推理机和解模糊接口。

第三节:遗传算法

3.1 遗传算法原理

遗传算法是一种模拟生物进化的优化算法,其基本步骤包括编码、适应度评估、选择、交叉和变异。编码是将问题的解表示为染色体的形式,适应度评估是根据目标函数计算每个个体的适应度,选择是根据适应度选择个体进行繁殖,交叉和变异则是通过遗传操作生成新的个体。

3.2 遗传算法的编码方式

常见的编码方式有二进制编码、实数编码和整数编码。在模糊PID控制器的优化中,通常采用整数编码,因为模糊控制规则的变量较多,整数编码更易于实现。

3.3 适应度函数

适应度函数是遗传算法的核心部分,它决定了个体的优劣。在模糊PID控制器的优化中,常用的适应度函数包括ITAE(积分时间绝对误差)和ISE(积分平方误差)。

第四节:基于遗传算法的模糊PID参数优化

4.1 优化流程

基于遗传算法的模糊PID参数优化流程如下:

  1. 初始化种群:随机生成初始种群,每个个体表示一组模糊PID参数。

  2. 适应度评估:计算每个个体的适应度,通常以系统的性能指标(如ITAE)为适应度函数。

  3. 选择操作:根据适应度选择个体进行繁殖,常用的方法有轮盘赌选择法和锦标赛选择法。

  4. 交叉操作:通过交叉操作生成新的个体,常用的交叉方法有单点交叉和多点交叉。

  5. 变异操作:通过变异操作增加种群的多样性,常用的变异方法有均匀变异和高斯变异。

  6. 迭代优化:重复选择、交叉和变异操作,直到满足终止条件(如达到最大迭代次数或适应度收敛)。

4.2 优化目标

优化的目标是找到一组最优的模糊PID参数,使系统的性能指标(如ITAE)最小化。通过遗传算法的全局搜索能力,可以避免陷入局部最优解,从而获得更好的优化结果。

第五节:优化结果分析

5.1 仿真环境

使用MATLAB/Simulink搭建仿真环境,被控对象采用二阶传递函数模型。仿真步长设置为0.01秒,仿真时间为10秒。

5.2 优化结果

通过遗传算法优化后的模糊PID控制器进化曲线如下:

5.3 性能对比

对比优化前后的模糊PID控制器性能,结果如下:

  • 优化前:系统响应时间较长,存在一定的超调,稳态误差较大。

  • 优化后:系统响应时间缩短,超调量减少,稳态误差显著降低。

优化后的模糊PID控制器能够更快地跟踪目标值,且没有明显的超调现象。

5.4 部分代码分享

function fitness=fitness(x)

Ki0=x(1);
Kp0=x(2);

assignin('base','Kp0',Kp0);
assignin('base','Ki0',Ki0);


E1=[-13.33 -10 -6.667];
E2=[-10 -6.667 -3.333];
E3=[-6.667 -3.333 4.441e-16];
E4=[-3.333 -1.11e-16 3.333];
E5=[4.441e-16 3.333 6.667];
E6=[3.333 6.667 10];
E7=[6.667 10 13.33];


EC1=[-13.33 -10 -6.667];
EC2=[-10 -6.667 -3.333];
EC3=[-6.667 -3.333 4.441e-16];
EC4=[-3.333 -1.11e-16 3.333];
EC5=[4.441e-16 3.333 6.667];
EC6=[3.333 6.667 10];
EC7=[6.667 10 13.33];


kp1=[-1.333 -1 -0.6666];
kp2=[-1 -0.6666 -0.3334];
kp3=[-0.6666 -0.3334 0];
kp4=[-0.3334 0 0.3334];
kp5=[0 0.3334 0.6666];
kp6=[0.3334 0.6666 1];
kp7=[0.6666 1 1.334];

ki1=[-1.333 -1 -0.6666];
ki2=[-1 -0.6666 -0.3334];
ki3=[-0.6666 -0.3334 0];
ki4=[-0.3334 0 0.3334];
ki5=[0 0.3334 0.6666];
ki6=[0.3334 0.6666 1];
ki7=[0.6666 1 1.334];

a=newfis('fuzzpid');
a=addvar(a,'input','E',[-10,10]);                        %Parameter E
a=addmf(a,'input',1,'NB','trimf',E1);
a=addmf(a,'input',1,'NM','trimf',E2);
a=addmf(a,'input',1,'NS','trimf',E3);
a=addmf(a,'input',1,'Z','trimf',E4);
a=addmf(a,'input',1,'PS','trimf',E5);
a=addmf(a,'input',1,'PM','trimf',E6);
a=addmf(a,'input',1,'PB','trimf',E7);

a=addvar(a,'input','ec',[-10,10]);                       %Parameter EC
a=addmf(a,'input',2,'NB','trimf',EC1);
a=addmf(a,'input',2,'NM','trimf',EC2);
a=addmf(a,'input',2,'NS','trimf',EC3);
a=addmf(a,'input',2,'Z','trimf',EC4);
a=addmf(a,'input',2,'PS','trimf',EC5);
a=addmf(a,'input',2,'PM','trimf',EC6);
a=addmf(a,'input',2,'PB','trimf',EC7);

a=addvar(a,'output','kp',[-1,1]);                   %Parameter kp
a=addmf(a,'output',1,'NB','trimf',kp1);
a=addmf(a,'output',1,'NM','trimf',kp2);
a=addmf(a,'output',1,'NS','trimf',kp3);
a=addmf(a,'output',1,'Z','trimf',kp4);
a=addmf(a,'output',1,'PS','trimf',kp5);
a=addmf(a,'output',1,'PM','trimf',kp6);
a=addmf(a,'output',1,'PB','trimf',kp7);

a=addvar(a,'output','ki',[-1,1]);             %Parameter ki
a=addmf(a,'output',2,'NB','trimf',ki1);
a=addmf(a,'output',2,'NM','trimf',ki2);
a=addmf(a,'output',2,'NS','trimf',ki3);
a=addmf(a,'output',2,'Z','trimf',ki4);
a=addmf(a,'output',2,'PS','trimf',ki5);
a=addmf(a,'output',2,'PM','trimf',ki6);
a=addmf(a,'output',2,'PB','trimf',ki7);

rulelist=[1, 1, 7 ,0 ,1, 1;
    1, 2, 7 ,0 ,1, 1;
    1, 3, 6 ,0 ,1, 1;
    1 ,4, 6 ,0 ,1, 1;
    1 ,5, 5 ,0 ,1, 1;
    1 ,6, 5 ,0 ,1, 1;
    1 ,7, 4 ,0 ,1, 1;

    2 ,1, 6 ,0 ,1, 1;
    2 ,2, 6 ,0 ,1, 1;
    2 ,3, 5 ,0 ,1, 1;
    2 ,4, 5 ,0 ,1, 1;
    2 ,5, 5 ,0 ,1, 1;
    2 ,6, 4 ,0 ,1, 1;
    2 ,7, 3 ,0 ,1, 1;

    3 ,1, 5 ,0 ,1, 1;
    3 ,2, 5 ,0 ,1, 1;
    3 ,3, 5 ,0 ,1, 1;
    3 ,4, 5 ,0 ,1, 1;
    3 ,5, 5 ,0 ,1, 1;
    3 ,6, 3 ,0 ,1, 1;
    3 ,7, 2 ,0 ,1, 1;

    4 ,1, 7 ,0 ,1, 1;
    4 ,2, 6 ,0 ,1, 1;
    4 ,3, 5 ,0 ,1, 1;
    4 ,4, 4 ,0 ,1, 1;
    4 ,5, 5 ,0 ,1, 1;
    4 ,6, 6 ,0 ,1, 1;
    4 ,7, 7 ,0 ,1, 1;

    5 ,1, 6 ,0 ,1, 1;
    5 ,2, 6 ,0 ,1, 1;
    5 ,3, 6 ,0 , 1,1;
    5 ,4, 5 ,0 ,1, 1;
    5 ,5, 5 ,0 ,1, 1;
    5 ,6, 6 ,0 ,1, 1;
    5 ,7, 6 ,0 ,1, 1;

    6 ,1, 5 ,0 ,1, 1;
    6 ,2, 4 ,0 ,1, 1;
    6 ,3, 3 ,0 ,1, 1;
    6 ,4, 2 ,0 ,1, 1;
    6 ,5, 2 ,0 ,1, 1;
    6 ,6, 2, 0 ,1, 1;
    6 ,7, 1, 0 ,1, 1;
    7 ,1, 5 ,0 ,1, 1;
    7 ,2, 5 ,0 ,1, 1;
    7 ,3, 5, 0 ,1, 1;
    7 ,4, 2, 0 ,1, 1;
    7 ,5, 1, 0 ,1, 1;
    7 ,6, 1, 0 ,1, 1;
    7 ,7, 1, 0 ,1, 1;
    1 ,1, 0 ,7 ,1, 1;
    1 ,2, 0 ,7 ,1, 1;
    1 ,3, 0 ,6 ,1, 1;
    1 ,4, 0 ,6 ,1, 1;
    1 ,5, 0 ,3 ,1, 1;
    1, 6, 0 ,2 ,1, 1;
    1, 7, 0 ,1 ,1, 1;
    2, 1, 0 ,7 ,1, 1;
    2 ,2, 0 ,7 ,1, 1;
    2 ,3, 0 ,6 ,1, 1;
    2 ,4, 0 ,5 ,1, 1;
    2 ,5, 0 ,4 ,1, 1;
    2 ,6, 0 ,3 ,1, 1;
    2 ,7, 0 ,2 ,1, 1;
    3 ,1, 0 ,7 ,1, 1;
    3 ,2, 0 ,7 ,1, 1;
    3 ,3, 0 ,6 ,1, 1;
    3 ,4, 0 ,6 ,1, 1;
    3 ,5, 0 ,5 ,1, 1;
    3 ,6, 0 ,3 ,1, 1;
    3 ,7, 0 ,1 ,1, 1;
    4 ,1, 0 ,7 ,1, 1;
    4 ,2, 0 ,6 ,1, 1;
    4 ,3, 0 ,5 ,1, 1;
    4 ,4, 0 ,5 ,1, 1;
    4 ,5, 0 ,5 ,1, 1;
    4 ,6, 0 ,6 ,1, 1;
    4 ,7, 0 ,7 ,1, 1;
    5 ,1, 0 ,2 ,1, 1;
    5 ,2, 0 ,3 ,1, 1;
    5 ,3, 0 ,4 ,1, 1;
    5 ,4, 0 ,5 ,1, 1;
    5 ,5, 0 ,5 ,1, 1;
    5 ,6, 0 ,6 ,1, 1;
    5 ,7, 0 ,7 ,1, 1;
    6 ,1, 0 ,4 ,1, 1;
    6 ,2, 0 ,4 ,1, 1;
    6 ,3, 0 ,5 ,1, 1;
    6 ,4, 0 ,5 ,1, 1;
    6 ,5, 0 ,6 ,1, 1;
    6 ,6, 0 ,7 ,1, 1;
    6 ,7, 0 ,7 ,1, 1;
    7 ,1, 0 ,1 ,1, 1;
    7 ,2, 0 ,2 ,1, 1;
    7 ,3, 0 ,3 ,1, 1;
    7 ,4, 0 ,6 ,1, 1;
    7 ,5, 0 ,6 ,1, 1;
    7 ,6, 0 ,7 ,1, 1;
    7 ,7, 0 ,7 ,1, 1;];


rulelist(:,5)=x(3:end);
fuzzpid=addrule(a,rulelist);
fuzzpid=setfis(fuzzpid,'DefuzzMethod','centroid');

assignin('base','fuzzpid',fuzzpid);

res=sim('Speed_GA_Fuzzy_PI.slx');

x=res.output.signals.values;
times=res.tout;

%% 稳态误差
target=0.5;
f1=mean(abs(x(end-50:end)-target));
%% 收敛时间
APE_X=abs(x-target)./target;
tx=length(x);
for t=length(x):-1:2
    if APE_X(t)>0.1
        break
    else
        tx=tx-1;
    end
end
f2=times(tx);
if tx==length(x)
    maximum_deviation_x=inf;
else
    maximum_deviation_x=max(abs(x(tx:end)-target));
end

f3=maximum_deviation_x;
w1=0.8;
w2=0.8;
w3=0.4;
fitness=w1*f1+w2*f2+w3*f3;

第六节:总结

本文介绍了遗传算法优化模糊PID控制器的原理和实践。通过遗传算法的全局优化能力,结合模糊控制的灵活性,可以有效地提高模糊PID控制器的性能。优化后的模糊PID控制器在响应速度、超调量和稳态误差等方面均优于优化前的控制器。这种方法特别适合于难以建立精确数学模型的复杂控制系统。未来的研究方向可以包括进一步优化遗传算法的参数设置,以及将该方法应用于其他类型的智能控制系统。

本人擅长各类优化模型的建模和求解,具有近400个优化项目的建模仿真经验,擅长模型构建,算法设计,算法实现和算法改进。累计指导各类建模/算法比赛和SCI写作超过100人次。
本人长期提供: ①源码分享(近1000个本人手写项目) ②辅导答疑(远程桌面一对一语音+文档指导,可以录屏反复观看)
③项目定制(根据您的现实问题,针对性建模求解,提供完整方案+代码实现)
长期在线,欢迎咨询,一般晚上看消息!!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝色洛特

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值