图像的分辨率主要指的是空间分辨率,即图像的像素密度以及单位面积的像素尺度,它描述了一幅图像中所包含细节的多少。分辨率越高,图像的细节越丰富,包含的信息含量就越多。
图像的空间分辨率首先受图像传感器和成像设备的制约,现有的CCD(Charge-coupled Device,电荷耦合元件)或CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)传感器单元通常都是采用二维矩阵的形式排列以捕获二维图像信号,传感器的大小以及单位面积上的感光单元个数决定了所获得图像的空间分辨率。 传感器单元的密度越大,成像系统的分辨率越高。传感器单元密度不足会导致空间采样频率降低从而产生具有锯齿效应的低分辨率图像(Low Resolution,LR)。为了提高成像系统的空间分辨率,最直接的方法就是通过减小感光单元尺寸的方法增加其排列密度,然而,随着感光单元尺寸的减小,在曝光时间内其接受到的光通量也在减少,从而提高了其受噪声影响的程度,同时, 这种改造也导致了硬件成本的提高,所以,从硬件方面来讲,感光单元尺寸及排列密度限制了图像空间分辨率的提高。
- 在卫星图像、红外和遥感等特殊图像处理领域,摄像头载体(一般是卫星)承重有限,除了成像设备自身制作工艺的限制外,增加成像设备载荷的卫星制造成本也非常高。另外,由于拍摄条件复杂,存在光学衍射啊,运动模糊啊啥的,简单的算法hold不住啊。
- 医疗影像领域同上。
- 在军事侦察方面,可以通过算法得到目标局部高清图像嘛。
- 在公共交通安全监测方面(车牌识别、安保监控等),高清晰成像会带来巨大的带宽和存储成本,降质或者压缩都是极好的。
- 高清电视和高清视频领域同上。
- 还有就是压缩类算法,因为人眼视觉对图像理解的要求并没有那么高,所以对图像进行适当的压缩能有效节约硬盘容量(存点中日友好交流电影什么的)。
- 最后就是,现在的图像处理技术已经从简单的单帧处理向序列帧处理发展,从小规模向大规模发展。比如基于大规模在线机器学习的图像搜索啊,相似场景挖掘啊啥的,都需要用到相邻/相似帧才能完成对某一帧图像的处理。
1. 国际会议
通常,国际上计算机视觉方面的三大国际会议是ICCV, CVPR和ECCV,统称之为ICE。
- CVPR,Internaltional Conference on Computer Vision and Pattern Recogintion,国际计算机视觉与模式识别会议。这是一个一年一次的会议,举办地在美国(除2002年)。
- ICCV,International Comference on Computer Vision,国际计算机视觉会议,ICCV两年一次,与ECCV正好错开,是公认的三个会议中级别最高的。
- ECCV,Europeon Conference on Computer Vision,欧洲计算机视觉会议,这是一个在欧洲举办的会议。
- ICIP——International Conference on Image Processing.
- BMVC——British Machine Vision Conference.
- IAPR MVA——IAPR Machine Vision Applications.
- 国际模式识别会议(ICPR)——International Conference on Pattern Recognition.
- 亚洲计算机视觉会议(ACCV)——Asian Conference on Computer Vision.
- SIGGRAPH——Special Interest Group for Computer GRAPHICS,计算机图形图像特别兴趣小组,更偏重图形方面.
- EUROGRAPHICS——European Association for computer graphics,与SIGGRAPH对应,只不过仅在欧洲范围内召开.
- IJCAI——International Joint Conference on Artificial Intelligence.
- ICSLP—— International Conference on Spoken Language Processing.
- ICASSP——International Conference on Acoustics, Speech and Signal Processing.
- ICML——International Conference on Machine Learning,在ML领域比较高级别的一个国际会议.
- ICME——International Consulting Management & Engineering,比较水。
- ......
2. 国际期刊
以计算机视觉为主要内容之一的国际刊物也有很多,如:
- International Journal of Computer Vision, IJCV International Journal of Computer Vision.
- IEEE Trans. On PAMI index • IEEE Computer Society.
IEEE Transactionson Image Processing(TIP) Transactions on Image Processing
Pattern Recognition(PR) http://www.elsevier.com/locate/issn/00313203
Pattern Recognition Letters(PR Letters) http://www.journals.elsevier.com/pattern-recognition-letters/
IEEE Trans. on Robotics and Automation.
CVGIP——Computer Vision, Graphics and Image Processing.
Visual Image Computing.
IJPRAI (Internatiorial Journat of Pattern Recognition and Artificial Intelligence).
- Multimedia IEEE MultiMedia Magazine.
3.国内会议
略。
4. 国内期刊
自动化学报、计算机学报、软件学报、电子学报,中国图象图形学报,模式识别与人工智能,光电子激光,光学 精密工程等。
小波和压缩感知
1)wavelet给图片提供一种multi-resolution或者multi-scale的分析方式。还有很多延伸的比如contourlet, curvelet之类的,统称为X-let。我学的时候没有感觉需要太深的数学知识。倒是你需要熟悉信号处理的基础,比如multi-rate analysis,Filter bank structure,还有基本的filter知识。数学方面知道卷积,微积分和线性代数应该就差不多了吧。
2)Compressed Sensing对数学的基础要求比较高。本来这个概念就是在06年T. Tao他们给出了performance guarantee的数学证明之后才火起来的。要读懂相关文献,你需要了解优化,线代,实分析,函数分析(Banach space什么的),统计,随机过程等相关数学基础。和他相关的信号处理的知识,比如sparse coding,dictionary learning之类的。