Data Agent:Data + AI最典型的应用场景

Agent简介

在大模型领域,Agent是一种基于大模型技术,能自主感知环境信息、运用自身智能进行分析决策,并采取行动以达成特定目标的智能实体,具有自主性、智能性和交互性等特点,可应用于智能客服、机器人控制、数据分析决策等多个场景。

2024年,Google团队发布了第一版Agents白皮书。

白皮书中对Agent的定义是,Agent可以理解为是一个扩展了大模型出厂能力的应用程序。工具的使用,是人类区别于动物的标志,也是Agent区别于大模型的标志。

Data Agent的应用

Data Agent是一种基于人工智能技术,特别是大模型技术的数据分析智能体,能将自然语言指令转换为数据操作,实现数据提取、分析和可视化。简单的说,Data Agent就是在大模型基础上构建一个数据分析的智能体。

Data Agent在很多场景有比较广泛的应用:

  • 企业数据分析:在企业中,用于财务数据分析、市场趋势分析、客户行为分析、运营数据监控等,帮助企业更好地理解业务状况,发现潜在问题和机会,支持战略决策和日常运营管理。

  • 数据治理:协助进行数据质量评估、数据清洗、数据分类与标注等数据治理工作,提高数据的质量和可用性,确保数据的准确性、一致性和完整性。

  • 智能客服:在客服场景中,Data Agent 可以理解用户的问题,从相关数据中获取答案,为用户提供准确、及时的服务,提高客服效率和满意度。

  • 科研与学术研究:在科研领域,可用于处理和分析实验数据、观测数据等,帮助科研人员更快地发现数据中的规律和趋势,支持科学研究和创新。

    部分企业的落地应用

阿里云瓴羊智能

瓴羊服务的客户非常多,有制造业、零售业等各种各样的客户,这些客户的内部流程和业务场景千差万别。随着 AI 技术的不断进步和业务场景的持续演变,要充分发挥 AI 的独特价值,关键在于以下两点:

(1)数据资产建设:企业内的数据相关部门或团队需要构建清晰且易于使用的数据资产。在上一轮的数据革命中,阿里巴巴主要解决的就是通过打造数据中台统一数据,并保证数据高质量的问题。

(2)角色赋能与数据利用:一旦数据资产建立起来,接下来的重点是如何让企业中的各个角色,尤其是那些与数据紧密相关的角色,发挥出其最大的价值。每个角色在服务用户时所需的数据及其使用方式各不相同。瓴羊的策略是为这些角色提供一个名为 Data Agent的数据平台,在这个平台上,他们可以根据自身的需求和场景快速创建定制化的数据代理(Agent)。这不仅有助于将特定角色的知识和经验沉淀下来,还为未来构建大规模的企业内部AI代理市场奠定了基础。

因此瓴羊智能诞生了Dataphin·DataAgent,瓴羊的Dataphin·DataAgent有两个核心能力:「快速找表」和「快速构建私有化DataAgent」能力

DataAgent是基于已准备好的数据资产(包括但不限于表格、指标、标签和数据 API 等),通过 Dataphin 快速编排而形成的智能化工具。它支持权限管理,能够针对不同业务部门实施访问控制。借助阿里巴巴成熟的数据资产管理经验,企业可以创建专门的工作空间来构建各部门的知识库,并根据这些知识库实现跨用户群及部门间的权限隔离。

Dataphin·DataAgent 为每位数据工作者提供了一个专属的数据智能助手。该平台集中管理来自多个源头的数据资源,采用主题式的目录结构进行组织,并赋予每项数据丰富的多维度属性,从而实现了从原始数据到有价值资产的转变。通过构建向量数据库并结合流程设计,用户可以轻松创建个性化的智能助手,开启智能化对话服务。

例如,官方推出的智能助手小D可以根据具体的商业目标提出建议,并给出分析框架。此外,它还能深入剖析复杂问题,识别出重要的数据资产元素,帮助用户精准定位所需信息。同时,这款工具还提供了查看数据间的关联性以及生成报告的功能,使得从需求分析到报表制作整个流程变得更加简单快捷。另外,当有特定的数据提取需求时,它也能辅助生成相应的查询代码,展示结果,并支持可视化数据分析,进而高效地完成高质量的数据分析报告,助力企业更好地挖掘其数据资产潜力。

用户还可以自行开发定制化的智能应用,并一键部署上线,以便更加有效地服务于具体业务场景,激发新的增长点。

Google

就在2025年3月,Google开源了Data Science Agent,在谷歌Colab中,由Gemini AI驱动的Data Science Agent作为一个智能助手,可自动完成库导入、数据集加载、可视化、代码生成和代码执行。

除了自动化之外,Gemini 驱动的代理还通过提供上下文感知建议、协助错误调试和代码优化来增强数据分析过程。通过将人工智能集成到 Colab 笔记本中,数据科学代理大大减少了重复编码任务所花费的时间,使用户能够专注于提取洞察力、构建模型和增强决策过程。

Data Science Agent还在 DABStep: Data Agent Benchmark for Multi-step Reasoning on HuggingFace 中名列第四,领先于基于GPT 4o、DeepSeek-V3、Claude 3.5 Haiku 和 Llama 3.3 70B的ReAct代理。

Google Colab 中的Data Science Agent由 Gemini AI提供支持,通过处理重复性任务和自动生成代码来简化数据分析工作流程,下面是一个案例:

  • 打开Notebook:启动一个空白的 Notebook,点击 Google Colab Notebook,然后点击"New Notebook";

  • 上传数据:打开新 Notebook 后,点击"Analyze files with Gemini",然后将鼠标悬停在右下角的添加文件菜单上,如图所示,即可将数据集导入笔记本,无论是 CSV(.csv) 还是 Excel 文件 (.xls) ;

  • 定义目标:在Gemini侧面板中,指定您需要的分析或模型类型。您可以使用自然语言提示,如"可视化趋势"、"建立并优化预测模型"、"处理缺失值"或"选择最佳统计技术"。代理会理解你的要求,并据此调整工作流程;

  • 让Agent完成工作:一旦您提供了目标,Data Science Agent就会生成必要的代码、导入相关库并执行所需的分析。只需片刻,您就能得到一个功能齐全的 Colab 笔记本,以便进一步探索和完善。

字节跳动

就在昨天2025年4月8日,火山引擎官方发布了第一位 AI 数据专家:「Data Agent」。

作为企业数据全场景智能体。Data Agent 能够对企业内部结构化、非结构化数据进行融合分析理解业务诉求并生成深度研究报告,无缝制定营销策略,完整执行营销活动,1v1地为每位用户配置触达时机和营销文案,活动结束后自动复盘全程,并且持续学习进化。

下图来自字节官方数据平台:

当然其他公司也有很多类似的Data Agent产品,不一一列举。

Data Agent从2023年被提出,仅仅不到2年时间迅速增长,已经成为数据分析和开发领域不得不关注的部分,未来Data Agent如何发展拭目以待。

300万字!全网最全大数据学习面试社区等你来!

如果这个文章对你有帮助,不要忘记 「在看」「点赞」「收藏」 三连啊喂!

全网首发|大数据专家级技能模型与学习指南(胜天半子篇)

互联网最坏的时代可能真的来了

我在B站读大学,大数据专业

我们在学习Flink的时候,到底在学习什么?

193篇文章暴揍Flink,这个合集你需要关注一下

Flink生产环境TOP难题与优化,阿里巴巴藏经阁YYDS

Flink CDC我吃定了耶稣也留不住他!| Flink CDC线上问题小盘点

我们在学习Spark的时候,到底在学习什么?

在所有Spark模块中,我愿称SparkSQL为最强!

硬刚Hive | 4万字基础调优面试小总结

数据治理方法论和实践小百科全书

标签体系下的用户画像建设小指南

4万字长文 | ClickHouse基础&实践&调优全视角解析

【面试&个人成长】社招和校招的经验之谈

大数据方向另一个十年开启 |《硬刚系列》第一版完结

我写过的关于成长/面试/职场进阶的文章

当我们在学习Hive的时候在学习什么?「硬刚Hive续集」

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王知无(import_bigdata)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值