【数据挖掘 特征选择】特征选择常用方法

本文介绍了几种常用的特征选择方法:1. 基于阈值过滤低方差特征;2. 通过相关系数保留高相关性特征;3. 利用决策树或随机森林挑选重要特征;4. 使用PCA等算法选取高区分度特征组合。这些方法在sklearn库中均有对应实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面列举一些最常用的方法
1、根据阈值过滤掉方差小的变量。
2、通过计算变量与标签的相关系数,留下相关性高的特征。
3、根据决策树或者随机森林,选择重要程度高的特征。
4、利用PCA等算法,对数据进行变换,选择区分度最高的特征组合。

特征选择的方法,大部分在sklearn库中有对应的实现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东华果汁哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值