一、题目:
假定某个局部区域细胞识别中正常P(w1)和异常P(w2)两类先验概率分别为P(w1)=0.9, P(w2)=0.1现有一系列待观察的细胞,其观察值为:-2.67 -3.55 -1.24 -0.98 -0.79 -2.85 -2.76 -3.73 -3.54 -2.27 -3.45 -3.08 -1.58 -1.49 -0.74 -0.42 -1.12 4.25 -3.99 2.88 -0.98 0.79 1.19 3.07 两类的类条件概率符合正态分布p(x|w1)=(-2,1.5), p(x|w2)=(2,2).依据最小错误率的贝叶斯决策对观察的结果进行分类。
二、学习目标MATLAB程序代码:
%1.导入数据
clc
clear
x=[-2.67 -3.55 -1.24 -0.98 -0.79 -2.85 -2.76 -3.73
-3.54 -2.27 -3.45 -3.08 -1.58 -1.49 -0.74 -0.42
-1.12 4.25 -3.99 2.88 -0.98 0.79 1.19 3.07]%导入数据
%2.计算数据的后验概率
pxw1=normpdf(x,-2,1.5)%计算每个数据在第一类的类条件概率
pxw2=normpdf(x,2,2)%计算每个数据在第二类的类条件概率
pw1=0.9;pw2=0.1;
px=(pxw1*pw1+pxw2*pw2)
pwx1=pxw1*pw1./px%计算数据属于第一类的后验概率
pwx2=1-pwx1%计算数据属于第二类的后验概率
%3.基于最小错误率进行分类决策
R=zeros(1,24);%建立初始分类矩阵 1x24全零阵
for i=1:24
if pwx1(i)>pwx2(i)%如果第i个数据属于第一类的后验概率大于第二类
R(i)=1;%该数据属于第一类,分类矩阵中该数据所对应的位置置为1
else
R(i)=2; %该数据属于第二类,分类矩阵中该数据所对应的位置置为2
end
i=i+1;
end
%4.显示最小错误率的分类结果
display('基于最小错误率的贝叶斯分类结果:');
display('1表示该点属于第一类,2表示该点属于第二类');
R%显示分类矩阵,其中1表示第一类,2表示第二类