1.依据最小错误率的贝叶斯决策对观察的结果进行分类MATLAB程序代码

一、题目:

假定某个局部区域细胞识别中正常P(w1)和异常Pw2)两类先验概率分别为P(w1)=0.9, P(w2)=0.1现有一系列待观察的细胞,其观察值为:-2.67 -3.55 -1.24 -0.98 -0.79 -2.85 -2.76 -3.73 -3.54 -2.27 -3.45 -3.08 -1.58 -1.49 -0.74 -0.42 -1.12 4.25 -3.99 2.88 -0.98 0.79 1.19 3.07 两类的类条件概率符合正态分布p(x|w1)=(-2,1.5), p(x|w2)=(2,2).依据最小错误率的贝叶斯决策对观察的结果进行分类。

二、学习目标MATLAB程序代码:

%1.导入数据
clc
clear
 x=[-2.67 -3.55 -1.24 -0.98 -0.79 -2.85 -2.76 -3.73
     -3.54 -2.27 -3.45 -3.08 -1.58 -1.49 -0.74 -0.42
     -1.12 4.25 -3.99 2.88 -0.98 0.79 1.19 3.07]%导入数据
%2.计算数据的后验概率
 pxw1=normpdf(x,-2,1.5)%计算每个数据在第一类的类条件概率
 pxw2=normpdf(x,2,2)%计算每个数据在第二类的类条件概率
 pw1=0.9;pw2=0.1;
 px=(pxw1*pw1+pxw2*pw2)
 pwx1=pxw1*pw1./px%计算数据属于第一类的后验概率
 pwx2=1-pwx1%计算数据属于第二类的后验概率
 %3.基于最小错误率进行分类决策
 R=zeros(1,24);%建立初始分类矩阵 1x24全零阵
 for i=1:24
if pwx1(i)>pwx2(i)%如果第i个数据属于第一类的后验概率大于第二类
R(i)=1;%该数据属于第一类,分类矩阵中该数据所对应的位置置为1
else
R(i)=2; %该数据属于第二类,分类矩阵中该数据所对应的位置置为2
end
i=i+1;
 end
%4.显示最小错误率的分类结果
display('基于最小错误率的贝叶斯分类结果:');
display('1表示该点属于第一类,2表示该点属于第二类');
R%显示分类矩阵,其中1表示第一类,2表示第二类

 

  

三、运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

楚歌again

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值