HDU 3613 Best Reward(扩展KMP:回文判断)
http://acm.hdu.edu.cn/showproblem.php?pid=3613
题意:给你一个字符串,要你把这个字符串分成两段,并使得被分开的两段价值和最大.一个串如果是回文,那么它的价值就是所有字符的价值和,否则价值为0.
分析:
首先原始串为S,将S逆转得到串T.(S=abcaaa,那么T=aaacba).
S串的后缀回文:即S串中区间[i,n-1]的串是不是回文?
将S作为主串,T串用扩展KMP算法去匹配S,extend1[n]数组保存匹配结果.如果extend1[i]+i==n时(n为S的长),那么以S[i]为首字符一直到底n-1位置的串是回文串,否则不是.(自己举个例子验证一下)
S串的前缀回文:即S串中区间[0,i-1]的串是不是回文?
将T作为主串,S串用扩展KMP算法去匹配T,extend2[n]数组保存匹配结果.如果extend2[len-i]+len-i==n时(n为S的长),那么以S[i-1]为尾字符一直到0位置的串是回文串,否则不是.(自己举个例子验证一下)
仔细思考下上面的模型.
AC代码:
#include <iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN=500000+1000;
char S[MAXN],T[MAXN];
int n;//串S与串T的长都为n
int next[MAXN],extend1[MAXN],extend2[MAXN];
int val[30],sum[MAXN];
void EKMP(char *S,char *T,int *next,int *extend)
{
int j=0;
int k=1;
while(j+1<n && T[0+j]==T[1+j])
j++;
next[1]=j;
for(int i=2;i<n;i++)
{
int len=k+next[k]-1,L=next[i-k];
if(L<len-i+1)
next[i]=L;
else
{
j=max(0,len-i+1);
while(i+j<n && T[i+j] == T[0+j])
j++;
next[i]=j;
k=i;
}
}
j=0;
while(j<n && S[0+j]==T[0+j])
j++;
extend[0]=j;
k=1;
for(int i=1;i<n;i++)
{
int len=k+extend[k]-1,L=next[i-k];
if(L<len-i+1)
extend[i]=L;
else
{
j=max(0,len-i+1);
while(i+j<n && j<n && S[i+j]==T[j])
j++;
extend[i]=j;
k=i;
}
}
}
int main()
{
int kase;
scanf("%d",&kase);
while(kase--)
{
for(int i=0;i<26;i++)
scanf("%d",&val[i]);
scanf("%s",S);
n=strlen(S);
for(int i=0;i<n;i++)
{
T[i]=S[n-1-i];
if(i==0)sum[i]=val[S[i]-'a'];
else sum[i]=sum[i-1]+val[S[i]-'a'];
}
T[n]=0;
EKMP(T,S,next,extend1);
EKMP(S,T,next,extend2);
int max_s=-1e8;
for(int i=1;i<n;i++)//i表示前半段的长度
{
int sc=0;//分数
//求前缀[0,i-1]分数
if(extend1[n-i]+n-i==n)
{
sc+= sum[i-1];
}
//求后缀[i,n-1]的分数
if(extend2[i]+i==n)
{
sc+= sum[n-1]-sum[i-1];
}
max_s=max(max_s,sc);
}
printf("%d\n",max_s);
}
return 0;
}