Best Reward
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1816 Accepted Submission(s): 739
One of these treasures is a necklace made up of 26 different kinds of gemstones, and the length of the necklace is n. (That is to say: n gemstones are stringed together to constitute this necklace, and each of these gemstones belongs to only one of the 26 kinds.)
In accordance with the classical view, a necklace is valuable if and only if it is a palindrome - the necklace looks the same in either direction. However, the necklace we mentioned above may not a palindrome at the beginning. So the head of state decide to cut the necklace into two part, and then give both of them to General Li.
All gemstones of the same kind has the same value (may be positive or negative because of their quality - some kinds are beautiful while some others may looks just like normal stones). A necklace that is palindrom has value equal to the sum of its gemstones' value. while a necklace that is not palindrom has value zero.
Now the problem is: how to cut the given necklace so that the sum of the two necklaces's value is greatest. Output this value.
For each test case, the first line is 26 integers: v 1, v 2, ..., v 26 (-100 ≤ v i ≤ 100, 1 ≤ i ≤ 26), represent the value of gemstones of each kind.
The second line of each test case is a string made up of charactor 'a' to 'z'. representing the necklace. Different charactor representing different kinds of gemstones, and the value of 'a' is v 1, the value of 'b' is v 2, ..., and so on. The length of the string is no more than 500000.
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 aba 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 acacac
1 6
题目大意给你一个字符串要你求出分成两个回文字符串的价值最大如果不是回文就为0;
这题需要用到很多技巧,首先用前缀和把价值和存储起来,然后套模版,因为只能且必须分成两个字符串所以前一个必须延伸到开头后一个必须延伸到末尾;
开两个数组记录字符串的长度,,其中的精华需要自己体会
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <sstream>
#include <set>
#include <map>
#include <cmath>
#include <malloc.h>
#include <algorithm>
using namespace std;
const int N = 1000010;
int sum[N], val[30];
char str[N];
int pre[N], pos[N], p[N];
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
for(int i=0;i<26;i++)
{
scanf("%d", &val[i]);
}
scanf("%s", str);
int len=strlen(str);
memset(sum,0,sizeof(sum));
memset(pre,0,sizeof(pre));
memset(pos,0,sizeof(pos));
memset(p,0,sizeof(p));
for(int i=1;i<=len;i++)
{
int v=str[i-1]-'a';
sum[i]=sum[i-1]+val[v];
}
for(int i=len;i>=0;i--)
{
str[i+i+2]=str[i];
str[i+i+1]='#';
}
str[0]='*';
int id=0;
for(int i=2;i<2*len+1;i++)
{
if(id+p[id]>i)
{
p[i]=min(p[id-(i-id)],p[id]-(i-id));
}
else
{
p[i]=1;
}
while(str[i+p[i]]==str[i-p[i]]) p[i]++;
if(i+p[i]>id+p[id])
{
id=i;
}
if(i-p[i]==0)
{
pre[p[i]-1]=1;
}
if(i+p[i]==(2*len+2))
{
pos[p[i]-1]=1;
}
}
int ans=0;
for(int i=1;i<len;i++)
{
int tmp=0;
if(pre[i]==1)
{
tmp+=sum[i];
}
if(pos[len-i]==1)
{
tmp+=(sum[len]-sum[i]);
}
ans=max(ans,tmp);
}
printf("%d\n",ans);
}
return 0;
}