hdu 4576 概率dp

题意:

有个机器人,然后给你一个1~n的环:

机器人初始的时候在1,现在给你m(1e6)个操作,每次操作给出一个步数x,机器人可以等概率的选择顺时针或者逆时针走x。

现在问你,m次操作以后,机器人停落在 [ l, r ] 区间的概率是多少。


解析:

状态转移方程,come on滚动数组滚起来,( ̄Q ̄)╯。

dp[cur ^ 1][runClock(i, x)] += dp[cur][i] * 0.5;
dp[cur ^ 1][runAntiClock(i, x)] += dp[cur][i] * 0.5;

开始想歪了,又是一看别人的状态转移就懂了- -。


代码:

#pragma comment(linker, "/STACK:1677721600")
#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <climits>
#include <cassert>
#include <iostream>
#include <algorithm>
#define pb push_back
#define mp make_pair
#define LL long long
#define lson lo,mi,rt<<1
#define rson mi+1,hi,rt<<1|1
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define mem(a,b) memset(a,b,sizeof(a))
#define FIN freopen("in.txt", "r", stdin)
#define FOUT freopen("out.txt", "w", stdout)
#define rep(i,a,b) for(int i=(a); i<=(b); i++)
#define dec(i,a,b) for(int i=(a); i>=(b); i--)

using namespace std;
const int mod = 1e9 + 7;
const double eps = 1e-8;
const double ee = exp(1.0);
const int inf = 0x3f3f3f3f;
const int maxn = 200 + 10;
const double pi = acos(-1.0);
const LL iinf = 0x3f3f3f3f3f3f3f3f;

int readT()
{
    char c;
    int ret = 0,flg = 0;
    while(c = getchar(), (c < '0' || c > '9') && c != '-');
    if(c == '-') flg = 1;
    else ret = c ^ 48;
    while( c = getchar(), c >= '0' && c <= '9') ret = ret * 10 + (c ^ 48);
    return flg ? - ret : ret;
}

int n, m, l, r;
double dp[2][maxn];

int runClock(int res, int x)
{
    return (res + x) % n;
}

int runAntiClock(int res, int x)
{
    return ((res - x) % n + n) % n;
}

int main()
{
#ifdef LOCAL
    FIN;
#endif // LOCAL
    while (~scanf("%d%d%d%d", &n, &m, &l, &r))
    {
        if (!n && !m && !l && !r)
            break;
        mem(dp, 0);
        dp[0][0] = 1.0;
        int cur = 0;
        while (m--)
        {
            int x = readT();
            rep(i, 0, n - 1)
            {
                dp[cur ^ 1][i] = 0;
            }
            rep(i, 0, n - 1)
            {
                if (dp[cur][i] == 0)
                    continue;
                dp[cur ^ 1][runClock(i, x)] += dp[cur][i] * 0.5;
                dp[cur ^ 1][runAntiClock(i, x)] += dp[cur][i] * 0.5;
            }
            cur ^= 1;
        }
        if (l == 1 && r == n)
        {
            printf("1.0000\n");
            continue;
        }
        double ans = 0;
        rep(i, l - 1, r - 1)
        {
            ans += dp[cur][i];
        }
        printf("%.4lf\n", ans);
    }
    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值